Accelerate Deep Learning Workloads with Amazon SageMaker: Train, deploy, and scale deep learning models effectively using Amazon SageMaker
暫譯: 使用 Amazon SageMaker 加速深度學習工作負載:有效訓練、部署和擴展深度學習模型
Dabravolski, Vadim
- 出版商: Packt Publishing
- 出版日期: 2022-10-28
- 售價: $1,930
- 貴賓價: 9.5 折 $1,834
- 語言: 英文
- 頁數: 278
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1801816441
- ISBN-13: 9781801816441
-
相關分類:
Maker、DeepLearning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Learn to implement end-to-end deep learning on Amazon SageMaker with practical examples.
Key Features:
- Explore key Amazon SageMaker capabilities in the context of deep learning
- Build, train and host DL models using SageMaker managed capabilities
- Cover in detail theoretical and practical aspects of training and hosting your deep learning models on Amazon SageMaker
Book Description:
Over the past 10 years, deep learning has grown from being an academic research field to seeing wide-scale adoption across multiple industries. Deep learning models demonstrate excellent results on a wide range of practical tasks, underpinning emerging fields such as virtual assistants, autonomous driving, and robotics. In this book, you will learn about the practical aspects of designing, building, and optimizing deep learning workloads on Amazon SageMaker. The book also provides end-to-end implementation examples for popular deep learning tasks, such as computer vision and natural language processing.
You will begin by exploring key Amazon SageMaker capabilities in the context of deep learning. Then, you will explore in detail the theoretical and practical aspects of training and hosting your deep learning models on Amazon SageMaker. You will learn how to train and serve deep learning models using popular open source frameworks and understand the hardware and software options available for you on Amazon SageMaker. The book also covers various optimizations technique to improve the performance and cost characteristics of your deep learning workloads.
By the end of this book, you will be fluent in the software and hardware aspects of running deep learning workloads using Amazon SageMaker.
What You Will Learn:
- Explore the key capabilities of Amazon SageMaker relevant to deep learning workloads
- Organize SageMaker development environment
- Prepare and manage datasets for deep learning training
- Design, debug, and implement the efficient training of deep learning models
- Deploy, monitor, and optimize the serving of deep learning models
Who this book is for:
This book is written for deep learning and AI engineers who have a working knowledge of the Deep Learning domain and who wants to learn and gain practical experience in training and hosting DL models in the AWS cloud using Amazon SageMaker service capabilities.
商品描述(中文翻譯)
學習如何在 Amazon SageMaker 上實現端到端的深度學習,並透過實際範例進行操作。
主要特點:
- 在深度學習的背景下探索 Amazon SageMaker 的關鍵功能
- 使用 SageMaker 管理的功能構建、訓練和托管深度學習模型
- 詳細涵蓋在 Amazon SageMaker 上訓練和托管深度學習模型的理論和實踐方面
書籍描述:
在過去的十年中,深度學習從一個學術研究領域發展到在多個行業中得到廣泛應用。深度學習模型在各種實際任務中表現出色,支撐著虛擬助手、自動駕駛和機器人等新興領域。在本書中,您將學習在 Amazon SageMaker 上設計、構建和優化深度學習工作負載的實際方面。本書還提供了針對流行深度學習任務(如計算機視覺和自然語言處理)的端到端實現範例。
您將首先探索 Amazon SageMaker 在深度學習方面的關鍵功能。接著,您將詳細探討在 Amazon SageMaker 上訓練和托管深度學習模型的理論和實踐方面。您將學習如何使用流行的開源框架訓練和服務深度學習模型,並了解在 Amazon SageMaker 上可用的硬體和軟體選項。本書還涵蓋了各種優化技術,以改善深度學習工作負載的性能和成本特徵。
在本書結束時,您將熟悉使用 Amazon SageMaker 運行深度學習工作負載的軟體和硬體方面。
您將學到的內容:
- 探索與深度學習工作負載相關的 Amazon SageMaker 的關鍵功能
- 組織 SageMaker 開發環境
- 準備和管理深度學習訓練的數據集
- 設計、調試和實施深度學習模型的高效訓練
- 部署、監控和優化深度學習模型的服務
本書適合誰:
本書是為具有深度學習領域工作知識的深度學習和人工智慧工程師撰寫的,旨在幫助他們學習並獲得在 AWS 雲中使用 Amazon SageMaker 服務能力訓練和托管深度學習模型的實踐經驗。