Pattern Recognition, 3/e(IE)
暫譯: 模式識別,第3版(IE)
Sergios Theodoridis, Konstantinos Koutroumbas
- 出版商: Academic Press
- 出版日期: 2006-03-10
- 售價: $1,180
- 貴賓價: 9.8 折 $1,156
- 語言: 英文
- 頁數: 856
- 裝訂: Hardcover
- ISBN: 0123695317
- ISBN-13: 9780123695314
已過版
買這商品的人也買了...
-
數位影像處理 (Digital Image Processing, 2/e)$820$804 -
數位邏輯設計 (Fundamentals of Logic Design, 5/e)$700$686 -
Linux 程式設計教學手冊$780$616 -
Matlab 7 程式設計$680$578 -
計算機組織與設計 (Computer Organization and Design: The Hardware/Software Interface, 3/e)$680$646 -
深入淺出設計模式 (Head First Design Patterns)$880$695 -
深入淺出 Java 程式設計, 2/e (Head First Java, 2/e)$880$695 -
C++ Primer Plus, 5/e 中文精華版$540$427 -
Java 認證 SCJP 5.0 猛虎出閘$650$514 -
作業系統原理 (Silberschatz: Operating System Principles, 7/e)$780$741 -
鳥哥的 Linux 私房菜基礎學習篇, 2/e$780$663 -
ASP.NET 2.0 深度剖析範例集$650$507 -
Microsoft SQL Server 2005 管理實務$680$578 -
SQL 語法範例辭典$550$468 -
Pattern Recognition and Machine Learning (Hardcover)$4,220$4,009 -
Linux 驅動程式, 3/e (Linux Device Drivers, 3/e)$980$774 -
精通 MFC 視窗程式設計─Visual Studio 2005 版$750$593 -
Visual C# 2005 程式開發與介面設計秘訣$750$593 -
Ajax 實戰手冊 (Ajax in Action)$680$537 -
聖殿祭司的 ASP.NET 2.0 專家技術手冊─使用 C#$720$569 -
Linux 核心詳解, 3/e (Understanding the Linux Kernel, 3/e)$1,200$948 -
Windows Vista 非常 Easy$299$254 -
寫給 SA 的 UML/MDA 實務手冊$350$298 -
C++ Primer, 4/e (中文版)$990$891 -
現代嵌入式系統開發專案實務-菜鳥成長日誌與專案經理的私房菜$600$480
商品描述
Description
A classic -- offering comprehensive and unified coverage with a balance between theory and practice! Pattern recognition is integral to a wide spectrum of scientific disciplines and technologies including image analysis, speech recognition and audio classification, communications, computer-aided diagnosis, data mining. The authors, leading experts in the field of pattern recognition, have once again provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. Each chapter is designed to begin with basics of theory progressing to advanced topics and then discusses cutting-edge techniques. Problems and exercises are present at the end of each chapter with a solutions manual provided via a companion website where a number of demonstrations are also available to aid the reader in gaining practical experience with the theories and associated algorithms. This edition includes discussion of Bayesian classification, Bayesian networks, linear and nonlinear classifier design (including neural networks and support vector machines), dynamic programming and hidden Markov models for sequential data, feature generation (including wavelets, principal component analysis, independent component analysis and fractals), feature selection techniques, basic concepts from learning theory, and clustering concepts and algorithms. This book considers classical and current theory and practice, of both supervised and unsupervised pattern recognition, to build a complete background for professionals and students of engineering. FOR INSTRUCTORS: To obtain access to the solutions manual for this title simply register on our textbook website (textbooks.elsevier.com)and request access to the Computer Science or Electronics and Electrical Engineering subject area. Once approved (usually within one business day) you will be able to access all of the instructor-only materials through the "Instructor Manual" link on this book's full web page.
Table of Contents
Chapter 1: Introduction Chapter 2: Classifiers Based on Bayes Decision Theory Chapter 3: Linear Classifiers Chapter 4: Nonlinear Classifiers Chapter 5: Feature Selection Chapter 6: Feature Generation I Chapter 7: Feature Generation II Chapter 8: Template Matching Chapter 9: Context-Dependant Classification Chapter 10: System Evaluation Chapter 11: Clustering: Basic Concepts Chapter 12: Clutering Algorithms I (Sequential) Chapter 13: Clustering Algorithms II (Hierarchical Chapter 14: Clustering Algorithms III (Functional Optimization) Chapter 15: Clustering Algorithms IV (Graph Theory) Chapter 16: Cluster Validity
商品描述(中文翻譯)
描述
這是一本經典之作,提供全面且統一的涵蓋,平衡理論與實踐!模式識別是許多科學學科和技術的核心,包括圖像分析、語音識別和音頻分類、通信、計算機輔助診斷、數據挖掘。作者是模式識別領域的領先專家,再次提供了一本最新的、自成一體的著作,涵蓋了這一廣泛的資訊。每一章的設計都是從基本理論開始,逐步進入高級主題,然後討論前沿技術。每章末尾都有問題和練習,並通過伴隨網站提供解答手冊,該網站還提供多個演示,幫助讀者獲得與理論和相關算法的實踐經驗。本版包括對貝葉斯分類、貝葉斯網絡、線性和非線性分類器設計(包括神經網絡和支持向量機)、動態規劃和隱馬爾可夫模型的討論,這些都是針對序列數據的,特徵生成(包括小波、主成分分析、獨立成分分析和分形)、特徵選擇技術、學習理論的基本概念,以及聚類概念和算法。本書考慮了經典和當前的理論與實踐,包括監督式和非監督式的模式識別,為工程專業人士和學生建立了完整的背景。
對於講師:要獲得本書解答手冊的訪問權限,只需在我們的教科書網站(textbooks.elsevier.com)上註冊並請求訪問計算機科學或電子與電氣工程學科領域。一旦獲得批准(通常在一個工作日內),您將能夠通過本書完整網頁上的「講師手冊」鏈接訪問所有僅限講師的材料。
目錄
第1章:介紹
第2章:基於貝葉斯決策理論的分類器
第3章:線性分類器
第4章:非線性分類器
第5章:特徵選擇
第6章:特徵生成 I
第7章:特徵生成 II
第8章:模板匹配
第9章:上下文依賴分類
第10章:系統評估
第11章:聚類:基本概念
第12章:聚類算法 I(序列)
第13章:聚類算法 II(層次)
第14章:聚類算法 III(功能優化)
第15章:聚類算法 IV(圖論)
第16章:聚類有效性
