Sharing Data and Models in Software Engineering (Paperback)
暫譯: 軟體工程中的數據與模型共享 (平裝本)
Tim Menzies, Ekrem Kocaguneli, Burak Turhan, Leandro Minku, Fayola Peters
- 出版商: Morgan Kaufmann
- 出版日期: 2014-12-15
- 定價: $3,100
- 售價: 8.0 折 $2,480
- 語言: 英文
- 頁數: 406
- 裝訂: Paperback
- ISBN: 0124172954
- ISBN-13: 9780124172951
-
相關分類:
軟體工程
立即出貨 (庫存=1)
買這商品的人也買了...
-
人月神話:軟體專案管理之道 (20 週年紀念版)(The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition, 2/e)$480$379 -
C 語言程式設計 + C 語言程式技巧問答實戰 (Kernighan: The C Programming Language, 2/e) (雙書合購)$980$980 -
深入淺出設計模式 (Head First Design Patterns)$880$695 -
徹底研究 Java 開發實戰經典$860$731 -
QR Code 解碼創意:連結行銷活動手法大揭密
$280$221 -
Arduino UNO R3 開發板(副廠相容版)附傳輸線$400$380 -
DSLR 外接閃燈─這樣打光就對了, 2/e$520$442 -
超圖解 Arduino 互動設計入門, 2/e$680$578 -
Responsive Web Design 自動調適型網頁程式設計-讓網頁在電腦 / 平板 / 手機完美展現$360$306 -
巨量資料的下一步-Big Data 新戰略、技術及大型網站應用實錄$360$324 -
物件導向設計模式-可再利用物件導向軟體之要素 (精裝典藏版) (Design Patterns: Elements of Reusable Object-Oriented Software)$550$550 -
啊哈!圖解演算法必學基礎$350$298 -
PhoneGap + Node.js 整合實作!用 JavaScript 做出跨平台手機 App 和雲端運用$520$411 -
Docker 入門與實戰$450$356 -
Android App 程式設計教本之無痛起步 -- 使用 Android Studio 開發環境$550$468 -
R 軟體資料分析基礎與應用 (R for Everyone: Advanced Analytics and Graphics)$650$553 -
丙級電腦硬體裝修學科題庫精要解析─2015年最新版, 7/e$99$89 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
完整學會 Git, GitHub, Git Server 的24堂課$360$284 -
Swift 2.0 程式設計開發指南$480$408 -
最新 HTML5 + CSS3 網頁程式設計, 2/e$520$442 -
用 LinkIt One 玩出物聯網大未來 (附入門影音教學/全書範例)$380$300 -
ARM 系統開發者指南 (ARM System Developer's Guide: Designing and Optimizing System Software)
$800$720 -
Raspberry Pi 3 Model B 桌面套件包$2,450$2,450 -
成長駭客 Growth Hacker -- 未來十年最被需要的新型人才,用低成本的創意思考和分析技術,讓創業公司的用戶$420$357
商品描述
Data Science for Software Engineering: Sharing Data and Models presents guidance and procedures for reusing data and models between projects to produce results that are useful and relevant. Starting with a background section of practical lessons and warnings for beginner data scientists for software engineering, this edited volume proceeds to identify critical questions of contemporary software engineering related to data and models. Learn how to adapt data from other organizations to local problems, mine privatized data, prune spurious information, simplify complex results, how to update models for new platforms, and more. Chapters share largely applicable experimental results discussed with the blend of practitioner focused domain expertise, with commentary that highlights the methods that are most useful, and applicable to the widest range of projects. Each chapter is written by a prominent expert and offers a state-of-the-art solution to an identified problem facing data scientists in software engineering. Throughout, the editors share best practices collected from their experience training software engineering students and practitioners to master data science, and highlight the methods that are most useful, and applicable to the widest range of projects.
- Shares the specific experience of leading researchers and techniques developed to handle data problems in the realm of software engineering
- Explains how to start a project of data science for software engineering as well as how to identify and avoid likely pitfalls
- Provides a wide range of useful qualitative and quantitative principles ranging from very simple to cutting edge research
- Addresses current challenges with software engineering data such as lack of local data, access issues due to data privacy, increasing data quality via cleaning of spurious chunks in data
商品描述(中文翻譯)
《軟體工程的資料科學:共享資料與模型》提供了在專案之間重用資料和模型的指導和程序,以產生有用且相關的結果。本書首先介紹了針對初學者資料科學家的實用課程和警示,接著識別當代軟體工程中與資料和模型相關的關鍵問題。學習如何將其他組織的資料調整為本地問題,挖掘私有化資料,修剪虛假資訊,簡化複雜結果,如何為新平台更新模型等。各章節分享了廣泛適用的實驗結果,並結合了以實務為導向的領域專業知識,評論中突顯了最有用且適用於最廣泛專案的方法。每一章均由知名專家撰寫,提供針對資料科學家在軟體工程中面臨的問題的最先進解決方案。在整個過程中,編輯們分享了他們在培訓軟體工程學生和從業人員掌握資料科學方面的最佳實踐,並強調了最有用且適用於最廣泛專案的方法。
- 分享領先研究者的具體經驗及為解決軟體工程領域資料問題而開發的技術
- 解釋如何啟動一個針對軟體工程的資料科學專案,以及如何識別和避免可能的陷阱
- 提供從非常簡單到尖端研究的廣泛有用的定性和定量原則
- 解決當前軟體工程資料的挑戰,例如缺乏本地資料、因資料隱私而產生的存取問題、透過清理虛假資料來提高資料質量等
