Sentiment Analysis in Social Networks
暫譯: 社交網絡中的情感分析
Federico Alberto Pozzi, Elisabetta Fersini, Enza Messina, Bing Liu
- 出版商: Morgan Kaufmann
- 出版日期: 2016-09-16
- 售價: $2,100
- 貴賓價: 9.5 折 $1,995
- 語言: 英文
- 頁數: 284
- 裝訂: Paperback
- ISBN: 0128044128
- ISBN-13: 9780128044124
-
相關分類:
Text-mining
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
無瑕的程式碼-敏捷軟體開發技巧守則 (Clean Code: A Handbook of Agile Software Craftsmanship)$580$452 -
無瑕的程式碼 番外篇-專業程式設計師的生存之道 (The Clean Coder: A Code of Conduct for Professional Programmers)
$360$281 -
完整學會 Git, GitHub, Git Server 的24堂課$360$284 -
Office 2016 幫幫忙$399$339 -
使用者故事對照 (User Story Mapping: Discover the Whole Story, Build the Right Product)$580$458 -
Android 高效入門>>深度學習-使用 Android Studio 2 開發 Android 6.0 APP
$650$507 -
讓響應式(RWD)網頁設計變簡單:Bootstrap開發速成 (附135分鐘專題影音教學)$420$332 -
Docker 錦囊妙計 (Docker Cookbook)$680$537 -
建構微服務|設計細微化的系統 (Building Microservices)$580$458 -
Windows 10 超級練功坊$350$277 -
Microsoft SQL Server 2016 資訊安全實戰$620$490 -
網路鑑證學習手冊:封包分析x日誌調查x惡意程式檢測$380$300 -
奠定大數據的基石:NoSQL資料庫技術, 2/e$560$476 -
UX策略|設計讓人夢寐以求的創新數位產品 (UX Strategy: How to Devise Innovative Digital Products that People Want)$480$379 -
機器學習 | 使用 Python 進行預測分析的基本技術$580$493 -
Python + Spark 2.0 + Hadoop 機器學習與大數據分析實戰$680$530 -
網站擷取|使用 Python (Web Scraping with Python: Collecting Data from the Modern Web)$580$458 -
UX 從新手開始|使用者體驗的 100堂必修課 (UX for Beginners: A Crash Course in 100 Short Lessons)$480$379 -
iOS 10 程式設計實戰 - Swift 3 + Apple Watch 快速上手的開發技巧200+$540$427 -
iOS 10 App 程式設計實力超進化實戰攻略 : 知名 iOS教學部落格 AppCoda 作家親授實作關鍵技巧讓你不NG$720$562 -
今天不學機器學習,明天就被機器取代:從 Python 入手+演算法$590$502 -
Android 程式設計入門、應用到精通, 4/e (使用Android Studio 2.X開發,涵蓋Android 7.X和Android Wear)$580$458 -
前端&行動網頁設計速成班-Bootstrap 4 + CSS3 + HTML5 + JavaScript$520$411 -
Python 自動化的樂趣|搞定重複瑣碎 & 單調無聊的工作 (中文版) (Automate the Boring Stuff with Python: Practical Programming for Total Beginners)$500$425 -
深度學習快速入門 — 使用 TensorFlow (Getting started with TensorFlow)
$360$281
相關主題
商品描述
The aim of Sentiment Analysis is to define automatic tools able to extract subjective information from texts in natural language, such as opinions and sentiments, in order to create structured and actionable knowledge to be used by either a decision support system or a decision maker. Sentiment analysis has gained even more value with the advent and growth of social networking.
Sentiment Analysis in Social Networks begins with an overview of the latest research trends in the field. It then discusses the sociological and psychological processes underling social network interactions. The book explores both semantic and machine learning models and methods that address context-dependent and dynamic text in online social networks, showing how social network streams pose numerous challenges due to their large-scale, short, noisy, context- dependent and dynamic nature.
Further, this volume:
Takes an interdisciplinary approach from a number of computing domains, including natural language processing, machine learning, big data, and statistical methodologies
Provides insights into opinion spamming, reasoning, and social network analysis
Shows how to apply sentiment analysis tools for a particular application and domain, and how to get the best results for understanding the consequences
Serves as a one-stop reference for the state-of-the-art in social media analytics
Takes an interdisciplinary approach from a number of computing domains, including natural language processing, big data, and statistical methodologies
Provides insights into opinion spamming, reasoning, and social network mining
Shows how to apply opinion mining tools for a particular application and domain, and how to get the best results for understanding the consequences
Serves as a one-stop reference for the state-of-the-art in social media analytics
商品描述(中文翻譯)
情感分析的目標是定義自動化工具,能夠從自然語言文本中提取主觀信息,例如意見和情感,以創建結構化且可行的知識,供決策支持系統或決策者使用。隨著社交網絡的興起和發展,情感分析的價值更是日益增加。
《社交網絡中的情感分析》一書首先概述了該領域最新的研究趨勢。接著討論了社交網絡互動背後的社會學和心理學過程。該書探討了語義和機器學習模型及方法,這些模型和方法針對在線社交網絡中的上下文依賴和動態文本,顯示社交網絡流因其大規模、短小、嘈雜、上下文依賴和動態特性而帶來的諸多挑戰。
此外,本書還:
採取跨學科的方法,涵蓋多個計算領域,包括自然語言處理、機器學習、大數據和統計方法論
提供對意見垃圾郵件、推理和社交網絡分析的見解
展示如何將情感分析工具應用於特定應用和領域,以及如何獲得最佳結果以理解其後果
作為社交媒體分析最前沿的綜合參考
採取跨學科的方法,涵蓋多個計算領域,包括自然語言處理、大數據和統計方法論
提供對意見垃圾郵件、推理和社交網絡挖掘的見解
展示如何將意見挖掘工具應用於特定應用和領域,以及如何獲得最佳結果以理解其後果
作為社交媒體分析最前沿的綜合參考
