Big Data Analytics Beyond Hadoop: Real-Time Applications with Storm, Spark, and More Hadoop Alternatives (Hardcover)
暫譯: 超越 Hadoop 的大數據分析:使用 Storm、Spark 及其他 Hadoop 替代方案的即時應用 (精裝版)
Vijay Srinivas Agneeswaran
買這商品的人也買了...
-
資料探勘 (Tan: Introduction to Data Mining)$660$627 -
深入淺出 Servlets 與 JSP (Head First Servlets and JSP, 2/e)$1,200$948 -
深入淺出 Python (Head First Python)$780$616 -
Arduino UNO R3 開發板(副廠相容版)附傳輸線$400$380 -
XBee Serial 1 帶天線 1mW$1,100$1,045 -
Architecting the Cloud: Design Decisions for Cloud Computing Service Models (Hardcover)$2,100$1,995 -
用 OpenStack 建立如 Amazon 的雲端環境$580$493 -
超圖解 Arduino 互動設計入門, 2/e$680$578 -
並行之美學-撰寫平行應用程式的新手指南 (The Art of Concurrency: A Thread Monkey's Guide to Writing Parallel Applications)$580$458 -
Make 國際中文版 vol.12 (Make: Volume 36 英文版)$380$342 -
Java SE 8 技術手冊$620$490 -
深入淺出 Node.js$560$437 -
MySQL 完全攻略 : 資料庫開發與效能調校$520$406 -
Responsive Web Design 自動調適型網頁程式設計-讓網頁在電腦 / 平板 / 手機完美展現$360$306 -
MySQL 完全攻略 : 管理與維護$380$296 -
改變世界的九大演算法 : 讓今日電腦無所不能的最強概念 (Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today’s Computers)$360$284 -
ASP.NET MVC 5 網站開發美學$780$616 -
3D 印表機大解密-超級新手 DIY 一次搞定啦$220$174 -
實戰私有雲架設-使用 OpenStack$420$332 -
Raspberry Pi 最佳入門與實戰應用-深入 Raspberry Pi 的全方位指南(附87段教學與執行影片/範例程式檔)$450$356 -
程式設計人應該知道的 97 件事 | 來自專家的集體智慧 (97 Things Every Programmer Should Know: Collective Wisdom from the Experts)$400$316 -
為什麼我 Android 程式比你的快又好─最佳化實作$520$442 -
Web Development with Django Cookbook (Paperback)$1,790$1,701 -
精實開發與看板方法$550$435 -
Node.js 模組參考手冊$580$458
商品描述
Master alternative Big Data technologies that can do what Hadoop can't: real-time analytics and iterative machine learning.
When most technical professionals think of Big Data analytics today, they think of Hadoop. But there are many cutting-edge applications that Hadoop isn't well suited for, especially real-time analytics and contexts requiring the use of iterative machine learning algorithms. Fortunately, several powerful new technologies have been developed specifically for use cases such as these. Big Data Analytics Beyond Hadoop is the first guide specifically designed to help you take the next steps beyond Hadoop. Dr. Vijay Srinivas Agneeswaran introduces the breakthrough Berkeley Data Analysis Stack (BDAS) in detail, including its motivation, design, architecture, Mesos cluster management, performance, and more. He presents realistic use cases and up-to-date example code for:
- Spark, the next generation in-memory computing technology from UC Berkeley
- Storm, the parallel real-time Big Data analytics technology from Twitter
- GraphLab, the next-generation graph processing paradigm from CMU and the University of Washington (with comparisons to alternatives such as Pregel and Piccolo)
Halo also offers architectural and design guidance and code sketches for scaling machine learning algorithms to Big Data, and then realizing them in real-time. He concludes by previewing emerging trends, including real-time video analytics, SDNs, and even Big Data governance, security, and privacy issues. He identifies intriguing startups and new research possibilities, including BDAS extensions and cutting-edge model-driven analytics.
Big Data Analytics Beyond Hadoop is an indispensable resource for everyone who wants to reach the cutting edge of Big Data analytics, and stay there: practitioners, architects, programmers, data scientists, researchers, startup entrepreneurs, and advanced students.
商品描述(中文翻譯)
掌握替代的 Big Data 技術,這些技術能做到 Hadoop 無法實現的功能:即時分析和迭代機器學習。
當大多數技術專業人士今天想到 Big Data 分析時,他們會想到 Hadoop。但有許多尖端應用並不適合 Hadoop,特別是即時分析和需要使用迭代機器學習算法的情境。幸運的是,已經開發出幾種強大的新技術,專門用於這些用例。《Big Data Analytics Beyond Hadoop》是第一本專門設計來幫助您邁出超越 Hadoop 的下一步的指南。Vijay Srinivas Agneeswaran 博士詳細介紹了突破性的 Berkeley Data Analysis Stack (BDAS),包括其動機、設計、架構、Mesos 集群管理、性能等。他提供了現實的用例和最新的示例代碼,包括:
- Spark,來自 UC Berkeley 的下一代內存計算技術
- Storm,來自 Twitter 的並行即時 Big Data 分析技術
- GraphLab,來自 CMU 和華盛頓大學的下一代圖形處理範式(並與 Pregel 和 Piccolo 等替代方案進行比較)
Halo 還提供了架構和設計指導,以及將機器學習算法擴展到 Big Data 的代碼草圖,並在即時中實現它們。他最後預覽了新興趨勢,包括即時視頻分析、SDN,甚至 Big Data 的治理、安全和隱私問題。他指出了一些引人注目的初創公司和新的研究可能性,包括 BDAS 擴展和尖端的模型驅動分析。
《Big Data Analytics Beyond Hadoop》是每個希望達到 Big Data 分析前沿並保持在那裡的人的不可或缺的資源:實踐者、架構師、程序員、數據科學家、研究人員、初創企業家和高級學生。
