Foundations of Deep Reinforcement Learning: Theory and Practice in Python
Graesser, Laura, Keng, Wah Loon
- 出版商: Addison Wesley
- 出版日期: 2019-12-05
- 售價: $1,600
- 貴賓價: 9.5 折 $1,520
- 語言: 英文
- 頁數: 416
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0135172381
- ISBN-13: 9780135172384
-
相關分類:
Python、Reinforcement 強化學習、DeepLearning 深度學習
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$490$480 -
$980$931 -
$1,485Deep Learning with Python (Paperback)
-
$714$678 -
$2,150$2,043 -
$1,580$1,548 -
$1,450$1,378 -
$550$435 -
$1,880$1,842 -
$2,248Practical Deep Learning for Cloud, Mobile, and Edge
-
$520$364 -
$1,180$1,121 -
$539$512 -
$1,470$1,397 -
$594$564 -
$880$695 -
$1,728Software Engineering at Google: Lessons Learned from Programming Over Time
-
$480$408 -
$1,400$1,372 -
$500$390 -
$580$458 -
$1,485$1,411 -
$580$458 -
$690$545 -
$750$593
相關主題
商品描述
In just a few years, deep reinforcement learning (DRL) systems such as DeepMinds DQN have yielded remarkable results. This hybrid approach to machine learning shares many similarities with human learning: its unsupervised self-learning, self-discovery of strategies, usage of memory, balance of exploration and exploitation, and its exceptional flexibility. Exciting in its own right, DRL may presage even more remarkable advances in general artificial intelligence.
Deep Reinforcement Learning in Python: A Hands-On Introduction is the fastest and most accessible way to get started with DRL. The authors teach through practical hands-on examples presented with their advanced OpenAI Lab framework. While providing a solid theoretical overview, they emphasize building intuition for the theory, rather than a deep mathematical treatment of results. Coverage includes:
- Components of an RL system, including environment and agents
- Value-based algorithms: SARSA, Q-learning and extensions, offline learning
- Policy-based algorithms: REINFORCE and extensions; comparisons with value-based techniques
- Combined methods: Actor-Critic and extensions; scalability through async methods
- Agent evaluation
- Advanced and experimental techniques, and more
作者簡介
Laura Graesser is a research software engineer working in robotics at Google. She holds a master's degree in computer science from New York University, where she specialized in machine learning.
Wah Loon Keng is an AI engineer at Machine Zone, where he applies deep reinforcement learning to industrial problems. He has a background in both theoretical physics and computer science.