Introducing Machine Learning
暫譯: 機器學習入門
Esposito, Dino, Esposito, Francesco
- 出版商: MicroSoft
- 出版日期: 2020-03-01
- 售價: $1,300
- 貴賓價: 9.5 折 $1,235
- 語言: 英文
- 頁數: 256
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0135565669
- ISBN-13: 9780135565667
-
相關分類:
Machine Learning
-
相關翻譯:
機器學習開發實戰 (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
嵌入式系統設計實務-電路與驅動程式$250$225 -
Using SQLite (Paperback)$1,800$1,710 -
ASP.NET 本質論$520$442 -
$700Professional Scrum Development with Microsoft Visual Studio 2012 (Paperback) -
Beginning Big Data with Power BI and Excel 2013: Big Data Processing and Analysis Using PowerBI in Excel 2013 (Paperback)$1,670$1,587 -
$474系統分析與設計:敏捷疊代方法(原書第6版) -
IoT Solutions in Microsoft's Azure IoT Suite: Data Acquisition and Analysis in the Real World$3,290$3,126 -
$857深度學習 -
演算法之美:隱藏在資料結構背後的原理 (C++版)$650$507 -
$534JSON 實戰 -
$284大數據技術 -
手機攝影必學 BOOK:用OX帶你學會拍人物、食物、風景等情境照片$398$299 -
創意競擇:從賈伯斯黃金年代的軟體設計機密流程,窺見蘋果的創意方法、本質與卓越關鍵$460$391 -
Web 開發者一定要懂的駭客攻防術 (Web Security for Developers: Real Threats, Practical Defense)$420$332 -
經理人之道:技術領袖航向成長與改變的參考指南 (The Manager's Path: A Guide for Tech Leaders Navigating Growth and Change)$480$379 -
資料科學的統計實務 : 探索資料本質、扎實解讀數據,才是機器學習成功建模的第一步$599$473 -
Martin Fowler 的企業級軟體架構模式:軟體重構教父傳授 51個模式,活用設計思考與架構決策 (Patterns of Enterprise Application Architecture)$800$624 -
我懂了!專案管理 (暢銷紀念版)$400$316 -
電腦視覺機器學習實務|建立端到端的影像機器學習 (Practical Machine Learning for Computer Vision: End-To-End Machine Learning for Images)$780$616 -
Learning Blazor: Build Single-Page Apps with Webassembly and C# (Paperback)$2,185$2,070 -
ASP.NET Core Razor Pages in Action (Paperback)$2,300$2,185 -
無瑕的程式碼 軟體工匠篇:程式設計師必須做到的紀律、標準與倫理 (Clean Craftsmanship: Disciplines, Standards, and Ethics)$720$562 -
從源頭就優化 - 動手開發自己的編譯器實戰$880$695 -
UX 商業價值實現之道|打造成功的數位產品服務 (UX for Business: How to Design Valuable Digital Companies)$780$616 -
建構可擴展系統|設計分散式架構 (Foundations of Scalable Systems: Designing Distributed Architectures)$780$616
商品描述
Today, machine learning offers software professionals unparalleled opportunity for career growth. In Introducing Machine Learning, best-selling software development author, trainer, and consultant Dino Esposito offers a complete introduction to the field for programmers, architects, lead developers, and managers alike.
Esposito begins by illuminating what's known about how humans and machines learn, introducing the most important classes of machine learning algorithms, and explaining what each of them can do. Esposito demystifies key concepts ranging from neural networks to supervised and unsupervised learning. Next, he explains each step needed to build a successful machine learning solution, from collecting and fine-tuning source data to building and testing your solution.
Then, building on these essentials, he guides you through constructing two complete solutions with ML.NET, Microsoft's powerful open source and cross-platform machine learning framework. Step by step, you'll create systems for performing sentiment analysis on social feeds, and analyzing traffic to predict accidents. By the time you're finished, you'll be ready to participate in data science projects and build working solutions of your own.
商品描述(中文翻譯)
今天,機器學習為軟體專業人士提供了無與倫比的職業成長機會。在《Introducing Machine Learning》中,暢銷的軟體開發作者、培訓師和顧問 Dino Esposito 為程式設計師、架構師、首席開發人員和經理們提供了該領域的完整介紹。
Esposito 首先闡明了人類和機器學習的已知知識,介紹了最重要的機器學習演算法類別,並解釋了每一種演算法的功能。Esposito 解釋了從神經網路到監督式學習和非監督式學習等關鍵概念。接下來,他解釋了構建成功機器學習解決方案所需的每一步,從收集和微調源數據到構建和測試解決方案。
然後,基於這些基本知識,他指導您使用 ML.NET 構建兩個完整的解決方案,這是微軟強大的開源跨平台機器學習框架。一步一步地,您將創建用於對社交媒體進行情感分析和分析交通以預測事故的系統。當您完成時,您將準備好參與數據科學項目並構建自己的工作解決方案。
