Data Analysis: A Bayesian Tutorial, 2/e (Paperback)
暫譯: 數據分析:貝葉斯教程,第二版(平裝本)
Devinderjit Sivia, John Skilling
- 出版商: Oxford University
- 出版日期: 2006-07-27
- 售價: $2,790
- 貴賓價: 9.5 折 $2,651
- 語言: 英文
- 頁數: 264
- 裝訂: Paperback
- ISBN: 0198568320
- ISBN-13: 9780198568322
-
相關分類:
機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
Data Engineering: Fuzzy Mathematics in Systems Theory and Data Analysis (Hardcover)$6,560$6,232 -
最新 C程式語言$520$442 -
C 語言教學手冊, 4/e$620$490 -
Fundamentals of Data Structures in C, 2/e (Paperback)$1,390$1,362 -
大話設計模式$620$490 -
Database Systems: Models, Language, Design, and Application Programming, 6/e (IE-Paperback)$1,300$1,274 -
大話資料結構$590$466 -
C++ How to Program 限量套書 (C++ How to Program, 7/e(IE) & C++ 程式設計藝術, 7/e(國際版))$1,000$1,000 -
精通正規表達式, 3/e (Mastering Regular Expressions, 3/e)$780$616 -
PL2303HX USB 轉 TTL 傳輸線$100$95 -
Computer Organization and Design: The Hardware/Software Interface, 5/e (Asian Edition)(IE-Paperback)$1,650$1,617 -
我的程式碼會說話$280$218 -
實戰雲端作業系統建置與維護-VMware vSphere 5.5 虛擬化全面啟動$690$545 -
Android 程式設計入門、應用到精通--增訂第三版 (適用 5.X~1.X, Android Wear 穿戴式裝置)$560$442 -
HTML5 完美風暴 III, 3/e$1,000$950 -
接案我最行:jQuery 經典範例必殺技$480$408 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
完整學會 Git, GitHub, Git Server 的24堂課$360$284 -
Kingston MicroSD卡 C10 16GB$190$190 -
威力導演14─數位影音玩樂高手 (附230分影音教學錄影檔)$420$332 -
認識虛擬化技術的第一本書(超圖解,學習無負擔)$380$300 -
科學運算 : Python程式理論與應用$860$731 -
Android 初學特訓班|最新 Android Studio 開發實戰, 6/e$480$379 -
下一波商業創新模式:圖像溝通 × 策略創新 × 商業設計思維,搶占未來市場商機 (The Art of Opportunity: How to Build Growth and Ventures Through Strategic Innovation and Visual Thinking)$520$442 -
生活處處是設計!提升產品及服務的附加價值$320$272
商品描述
Description
Statistics lectures have been a source of much bewilderment and frustration for generations of students. This book attempts to remedy the situation by expounding a logical and unified approach to the whole subject of data analysis.
This text is intended as a tutorial guide for senior undergraduates and research students in science and engineering. After explaining the basic principles of Bayesian probability theory, their use is illustrated with a variety of examples ranging from elementary parameter estimation to image processing. Other topics covered include reliability analysis, multivariate optimization, least-squares and maximum likelihood, error-propagation, hypothesis testing, maximum entropy and experimental design.
Table of Contents
1. The Basics ,2. Parameter Estimation I ,3. Parameter Estimation II ,4. Model Selection ,5. Assigning Probabilities ,6. Non-parametric Estimation ,7. Experimental Design ,8. Least-Squares Extensions ,9. Nested Sampling ,10. Quantification ,AppendicesBibliography
商品描述(中文翻譯)
**描述**
統計學講座對於幾代學生來說一直是困惑和挫折的來源。本書試圖通過闡述一種邏輯且統一的數據分析整體方法來改善這種情況。
本書旨在作為科學和工程領域的高年級本科生及研究生的教程指南。在解釋貝葉斯概率理論的基本原則後,通過從基本參數估計到影像處理的各種範例來說明其應用。其他涵蓋的主題包括可靠性分析、多變量優化、最小二乘法和最大似然法、誤差傳播、假設檢驗、最大熵和實驗設計。
**目錄**
1. 基礎知識,Sivia
2. 參數估計 I,Sivia
3. 參數估計 II,Sivia
4. 模型選擇,Sivia
5. 機率分配,Sivia
6. 非參數估計,Sivia
7. 實驗設計,Sivia
8. 最小二乘法擴展,Sivia
9. 嵌套取樣,Skilling
10. 量化,Skilling
附錄
參考文獻
