Mobile IPv6: Mobility in a Wireless Internet
Hesham Soliman
- 出版商: Addison Wesley
- 出版日期: 2004-04-15
- 定價: $1,750
- 售價: 2.3 折 $399
- 語言: 英文
- 頁數: 368
- 裝訂: Paperback
- ISBN: 0201788977
- ISBN-13: 9780201788976
-
相關分類:
IPV6
立即出貨(限量) (庫存=3)
買這商品的人也買了...
-
$980$774 -
$600$474 -
$880$695 -
$780$741 -
$590$466 -
$580$458 -
$1,320$1,254 -
$750$675 -
$560$504 -
$2,310$2,195 -
$490$387 -
$850$723 -
$480$379 -
$750$593 -
$780$616 -
$780$616 -
$590$460 -
$680$537 -
$490$382 -
$990$782 -
$780$616 -
$480$379 -
$650$514 -
$650$507 -
$680$646
商品描述
Table of Contents:
Foreword.
Preface.
Acknowledgements.
I. INTRODUCTION.
1. Introduction.
The Internet Protocol Suite.
Networking with the Internet Protocol
Suite.
IP Addresses.
The Domain Name System.
Host-to-Host Communication.
Encapsulation.
Demultiplexing.
Routing in the Internet.
Client-Server Versus Peer-to-Peer
Communication.
The Need for IPv6.
What Is IP Mobility?
How Important Is Mobility?
Where Do I Need Mobility Management: Layer 2,
Layer 3, or Upper Layers?
Mobile IPv6: Main Requirements.
Summary.
2. An IPv6 Primer.
The IPv6 Protocol.
Why Doesn't the IPv6 Header Contain a Checksum
Field?
Do We Need a Larger Payload Length Field?
The Flow Label.
IPv6 Extension Headers.
The Hop-by-Hop Options Header.
The Routing Header.
The Fragmentation Header.
IP Layer Security.
The Destination Options Header.
Ordering of the Extension Headers.
ICMPv6.
ICMPv6 Error Messages.
ICMPv6 Informational Messages.
Tunneling.
What Happens to other Fields in the Tunnel
Header?
How Many Times Can an IPv6 Packet Be
Tunneled?
IPv6 Addresses.
Textual Representation of IPv6 Addresses.
Unicast Addresses.
Multicast Addresses.
Anycast Addresses.
The Unspecified Address.
IPv6 Addresses Containing IPv4 Addresses.
Neighbor Discovery.
Why Does a Node Need to Discover a
Neighbor?
Stateless Address Autoconfiguration.
Ingress Filtering.
A Communication Example.
Summary.
II. MOBILE IPv6.
3. Mobile IPv6.
Mobile IPv6 Terminology.
Overview of Mobile IPv6.
Binding Updates and Acknowledgments.
Refreshing Bindings.
Why Reverse Tunneling?
Movement Detection.
Returning Home.
Source Address Selection in Mobile Nodes.
Dynamic Home Agent Discovery.
Challenges Associated with Plug and Play for
Mobile Nodes.
Can a Mobile Node Have More than One Home
Agent?
Virtual Home Links.
Route Optimization.
Sending Route Optimized Packets to Correspondent
Nodes.
Receiving Route Optimized Packets from
Correspondent Nodes.
Acknowledging Binding Updates Sent to
Correspondent Nodes.
What if the Correspondent Node Failed?
Why Not IP in IP Tunneling for Route
Optimization?
What if the Mobile Node Failed?
Site-Local Addresses and Mobile IPv6.
A Communication Example.
Summary.
4. Introduction to Security.
What Is Security and Why Is It Needed?
Authentication.
Authorization.
Confidentiality, Integrity Checks,
Nonrepudiation, and Replay Attacks.
Cryptography.
Encryption Algorithms and Keys.
Secret Key Encryption.
Public Key Cryptography.
Hash Functions, Message Digests, and Message
Authentication Codes.
Nonces and Cookies.
Establishing a Security Association.
Cryptographically Generated Addresses.
Firewalls and Application Level Gateways.
Summary.
5. Securing Mobile IPv6 Signaling.
Why Do We Need to Secure Mobile IPv6?
Using Binding Updates to Launch Attacks.
Attacks Using the Routing Header and Home
Address Option.
MITM Attacks on MPS/MPA.
Requirements for Mobile IPv6 Security.
Securing Communication Between Mobile and
Correspondent Nodes.
Securing Messages to the Home Agent.
Assumptions about Mobile IPv6 Security.
Mobile IPv6 Security.
Securing Binding Updates to the Home
Agent.
Securing Mobile Prefix Solicitations and
Advertisements.
Manual Versus Dynamic SAs Between the Mobile
Node and Its Home Agent Configuration 162
Securing Binding Updates to Correspondent
Nodes.
Preventing Attacks Using Home Address Options
and Routing Headers.
Future Mechanisms for Authenticating Binding
Updates.
Alternative 1: Using a Cryptographically
Generated Home Address.
Alternative 2: Using Cryptographically Generated
Home and Care-of Addresses.
Other Improvements Gained from CGAs.
Summary.
III. HANDOVER OPTIMIZATIONS FOR WIRELESS NETWORKS.
6. Evaluating Mobile IPv6 Handovers.
Layer 2 Versus Layer 3 Handovers.
Where Is Layer 2 Terminated?
Two Different Categories of Wireless
Links.
Make-Before-Break Versus Break-Before-Make
Handovers.
How Long Does a Mobile IPv6 Handover Take?
Reducing Neighbor Discovery and DAD
Delays.
Handover Impacts on TCP and UDP Traffic.
How Does TCP Work?
Mobility Impacts on TCP.
What About UDP?
Summary.
7. Mobile IPv6: Handover Optimizations and
Extensions.
Fast Handovers for Mobile IPv6.
Anticipation and Handover Initiation.
Updating the Current Access Router.
Moving to a New Link.
Failure Cases.
The Cost of Anticipation.
Security Issues.
Can We Use CGAs to Secure Fast Handover
Signaling?
An Alternate Approach to Fast Handovers.
Hierarchical Mobile IPv6 (HMIPv6).
HMIPv6 Overview.
MAP Discovery.
Deploying HMIPv6.
Location Privacy.
Local Mobility Without Updating Correspondent
Nodes.
Securing Binding Updates Between a Mobile Node
and a MAP.
Combining Fast Handovers and HMIPv6.
Flow Movement in Mobile IPv6.
Summary.
8. Current and Future Work on IPv6
Mobility.
AAA as an Enabler for Mobility.
Achieving Seamless Mobility.
Link-Layer Agnostic Interface to the IP
Layer.
Context Transfer.
Candidate Access Router Discovery (CARD).
Network Mobility.
Summary.
IV. IPv6 AND MOVILE IPv6 DEPLOYMENT.
9. IPv6 in an IPv4 Internet: Migration and
Coexistence.
How and When Will IPv6 Be Deployed?
What Are the Problems?
Tunneling.
Configured Tunnels.
6-to-4 Tunneling.
Routing Protocols-Based Tunnel End Point
Discovery.
Intrasite Automatic Addressing Protocol
(ISATAP).
Translation.
Stateless IP ICMP Translator (SIIT).
Network Address Translator and Protocol
Translator (NAT-PT).
Other Deployment Scenarios and
Considerations.
IPv6-Only Networks.
Mobility Considerations.
Summary.
10. A Case Study: IPv6 in 3GPP Networks.
3GPP Background.
3GPP UMTS Network Architecture.
Packet-Switched Core Network.
Circuit-Switched Core Network.
UTRAN Architecture.
Wideband Code Division Multiple Access.
Power Control and Handovers.
UMTS Core Network.
PDP Context Activation.
Mobility Management in the Core Network.
IPv6 in UMTS.
Address Configuration.
Transition and Coexistence.
IPv6 Mobility.
Summary.
Index.
商品描述(中文翻譯)
目錄:
前言。
前言。
致謝。
I. 簡介。
1. 簡介。
網際網路協定套件。
使用網際網路協定套件進行網絡連接。
IP位址。
域名系統。
主機對主機通信。
封裝。
多路分解。
網際網路中的路由。
客戶端-服務器與點對點通信。
IPv6的需求。
什麼是IP移動性?
移動性的重要性?
我在哪裡需要移動性管理:第2層、第3層還是更高層?
Mobile IPv6:主要需求。
摘要。
2. IPv6入門。
IPv6協定。
為什麼IPv6標頭不包含校驗和欄位?
我們需要更大的有效載荷長度欄位嗎?
流標籤。
IPv6擴展標頭。
跳躍選項標頭。
路由標頭。
分段標頭。
IP層安全性。
目的地選項標頭。
擴展標頭的排序。
ICMPv6。
ICMPv6錯誤訊息。
ICMPv6資訊訊息。
隧道。
隧道標頭中的其他欄位會發生什麼情況?
IPv6封包可以進行多少次隧道傳輸?
IPv6位址。
IPv6位址的文字表示法。
單播位址。
多播位址。
任播位址。
未指定位址。
包含IPv4位址的IPv6位址。
鄰居發現。
節點為什麼需要發現鄰居?
無狀態位址自動配置。
入口過濾。
通信示例。
摘要。
II. 移動IPv6。