Boosting: Foundations and Algorithms (Hardcover)
暫譯: 提升:基礎與演算法 (精裝版)
Robert E. Schapire, Yoav Freund
- 出版商: MIT
- 出版日期: 2012-05-18
- 售價: $2,250
- 貴賓價: 9.5 折 $2,138
- 語言: 英文
- 頁數: 544
- 裝訂: Hardcover
- ISBN: 0262017180
- ISBN-13: 9780262017183
-
相關分類:
Algorithms-data-structures
-
相關翻譯:
機器學習提升法 理論與算法 (簡中版)
買這商品的人也買了...
-
深入淺出 Java 程式設計, 2/e (Head First Java, 2/e)$880$695 -
軟體建構之道 (Code Complete, 2/e)$1,200$1,020 -
Windows Server 2008 R2 虛擬化技術 Hyper-V R2$680$537 -
Visual C# 2010 程式設計經典$650$514 -
精通 Python 3 程式設計, 2/e (Programming in Python 3: A Complete Introduction to the Python Language, 2/e)$680$537 -
Google Android SDK 開發範例大全, 3/e$950$751 -
Android 技術內幕-探索 Android 核心原理與系統開發$580$458 -
深入淺出 Python (Head First Python)$780$616 -
Android 4.X 手機/平板電腦程式設計入門、應用到精通, 2/e (適用 Android 1.X~4.X)$520$411 -
《超強圖解》前進 Android Market!Google Android SDK 實戰演練, 2/e (適用2.X/3.X/4.X)$750$593 -
JavaScript 大全, 6/e (JavaScript: The Definitive Guide: Activate Your Web Pages, 6/e)$1,200$948 -
SQL Server 2012 T-SQL 資料庫設計
$690$545 -
Android 核心剖析$650$514 -
Android 初學特訓班, 2/e (全新 Android 4 開發示範 / 適用 Android 4.X~2.X,手機與平板電腦的全面啟動,附影音教學/範例程式/小綠人素材)$480$379 -
實戰雲端作業系統建置與維護-VMware vSphere 5 虛擬化全面啟動
$680$537 -
來自程式的試鍊:專為程式開發人員所寫的技術面試完全攻略 (Cracking the Coding Interview, 5/e : 150 Programming Questions and Solutions)$650$514 -
JavaScript & jQuery: The Missing Manual 國際中文版, 2/e
$580$458 -
ASP.NET 4.5 專題實務 [I]-C# 入門實戰篇$780$616 -
《超強圖解》前進 App Store!iOS 6 SDK 實戰演練$950$751 -
深入淺出 C (Head First C)$880$695 -
jQuery UI 使用者介面設計 (jQuery UI)$450$356 -
ASP.NET MVC 4 開發實戰$680$537 -
無瑕的程式碼-敏捷軟體開發技巧守則 + 番外篇-專業程式設計師的生存之道 (雙書合購)$940$700 -
哈佛教你精通大數據$350$298 -
集成學習:基礎與算法$534$507
商品描述
Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate "rules of thumb." A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical.
This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. The book begins with a general introduction to machine learning algorithms and their analysis; then explores the core theory of boosting, especially its ability to generalize; examines some of the myriad other theoretical viewpoints that help to explain and understand boosting; provides practical extensions of boosting for more complex learning problems; and finally presents a number of advanced theoretical topics. Numerous applications and practical illustrations are offered throughout.
商品描述(中文翻譯)
提升(Boosting)是一種機器學習的方法,基於通過結合許多弱且不準確的「經驗法則」來創建一個高準確度的預測器的理念。圍繞提升的理論發展出了一個相當豐富的體系,與統計學、博弈論、凸優化和信息幾何等多個主題有著聯繫。提升算法在生物學、視覺和語音處理等領域也取得了實際成功。在其歷史的不同時期,提升曾被視為神秘、具爭議性,甚至是矛盾的。
這本書由該方法的發明者撰寫,匯集、組織、簡化並大幅擴展了二十年的提升研究,將理論和應用以易於不同背景讀者理解的方式呈現,同時也為高級研究人員提供了權威的參考。書中對所有材料進行了入門式的處理,並在每一章中包含練習題,因此也適合用作課程教材。書籍首先介紹機器學習算法及其分析,然後探討提升的核心理論,特別是其概括能力;接著檢視幫助解釋和理解提升的眾多其他理論觀點;提供提升在更複雜學習問題上的實用擴展;最後介紹一些高級理論主題。全書提供了眾多應用和實際示例。
