Predicting Structured Data (Hardcover)
暫譯: 預測結構化數據 (精裝版)
Gökhan H. Bakir, Thomas Hofmann, Bernhard Schölkopf, Alexander J. Smola
- 出版商: MIT
- 出版日期: 2007-07-27
- 售價: $1,500
- 貴賓價: 9.5 折 $1,425
- 語言: 英文
- 頁數: 360
- 裝訂: Hardcover
- ISBN: 0262026171
- ISBN-13: 9780262026178
-
相關分類:
Machine Learning
立即出貨
買這商品的人也買了...
-
The Joy of Patterns: Using Patterns for Enterprise Development$1,050$1,029 -
$399Relational Database Design Clearly Explained, 2/e (Paperback) -
$972The Definitive Guide to Samba 3 (Paperback) -
How Networks Work, 7/e (Paperback)$1,590$1,511 -
Herb Schildt's C++ Programming Cookbook$2,570$2,442 -
$299JavaScript: The Missing Manual -
Dataset Shift in Machine Learning (Hardcover)$1,575$1,496 -
$1,188Fedora 11 and Red Hat Enterprise Linux Bible (Paperback) -
離散數學 最新修訂版$800$632 -
$840Statistical Analysis: Microsoft Excel 2010 (Paperback) -
Python 設計模式深入解析 (Mastering Python Design Patterns)$360$281 -
不再聽不懂!圖解網站建置與開發$450$356 -
演算法之美:隱藏在資料結構背後的原理 (C++版)$650$507 -
Python 技術者們 - 實踐! 帶你一步一腳印由初學到精通$650$553 -
Python 技術者們 - 練功!老手帶路教你精通正宗 Python 程式 (The Quick Python Book, 3/e)$780$663 -
設計師都該懂的包容性網頁 UI/UX 設計模式:知名設計師教你親和性網頁的實作祕密$450$351 -
邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 2/e (How Linux Works: What Every Superuser Should Know, 2/e)$600$468 -
JavaScript 技術手冊$560$476 -
PowerShell 流程自動化攻略 (Powershell for Sysadmins: A Hands-On Guide to Automating Your Workflow)$500$425 -
精通資料視覺化 : 用試算表與程式說故事 (Hands-On Data Visualization: Interactive Storytelling from Spreadsheets to Code)$680$537 -
打下最紮實 AI 基礎不依賴套件:手刻機器學習神經網路穩健前進$1,200$948 -
強健的 Python|撰寫潔淨且可維護的程式碼 (Robust Python: Write Clean and Maintainable Code)$680$537 -
Template Metaprogramming with C++: Learn everything about C++ templates and unlock the power of template metaprogramming (Paperback)$1,830$1,739 -
邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 3/e (How Linux Works : What Every Superuser Should Know, 3/e)$780$608 -
精通無瑕程式碼:工程師也能斷捨離!消除複雜度、提升效率的 17個關鍵技法 (The Art of Clean Code: Best Practices to Eliminate Complexity and Simplify Your Life)$600$468
相關主題
商品描述
Description
Machine learning develops intelligent computer systems that are able to generalize from previously seen examples. A new domain of machine learning, in which the prediction must satisfy the additional constraints found in structured data, poses one of machine learning’s greatest challenges: learning functional dependencies between arbitrary input and output domains. This volume presents and analyzes the state of the art in machine learning algorithms and theory in this novel field. The contributors discuss applications as diverse as machine translation, document markup, computational biology, and information extraction, among others, providing a timely overview of an exciting field.
商品描述(中文翻譯)
**描述**
機器學習發展出能夠從先前見過的範例中進行概括的智能計算機系統。機器學習的一個新領域要求預測必須滿足結構化數據中的額外約束,這對機器學習來說是一個最大的挑戰之一:學習任意輸入和輸出領域之間的功能依賴性。本書介紹並分析了這一新領域中機器學習算法和理論的最新進展。貢獻者討論了多種應用,包括機器翻譯、文檔標記、計算生物學和信息提取等,提供了對這一令人興奮的領域的及時概述。
