Machine Learning: The New AI (The MIT Press Essential Knowledge series)
暫譯: 機器學習:新一代人工智慧(麻省理工學院出版社基本知識系列)
Ethem Alpaydin
- 出版商: MIT
- 出版日期: 2016-10-07
- 售價: $650
- 貴賓價: 9.5 折 $618
- 語言: 英文
- 頁數: 230
- 裝訂: Paperback
- ISBN: 0262529513
- ISBN-13: 9780262529518
-
相關分類:
Machine Learning
-
相關翻譯:
機器學習 -- 探索人工智慧關鍵 (繁中版)
立即出貨(限量) (庫存=2)
買這商品的人也買了...
-
人月神話:軟體專案管理之道 (20 週年紀念版)(The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition, 2/e)$480$379 -
MIS 網管實戰寶典:Linux 老鳥這樣搞定機房大小事$450$383 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
流暢的 Python|清晰、簡潔、有效的程式設計 (Fluent Python)$980$774 -
Developing Microservices with Node.js (Paperback)$1,500$1,425 -
機器學習:類神經網路、模糊系統以及基因演算法則, 4/e$390$351 -
工程數學
$600$540 -
$301軟技能代碼之外的生存指南 (Soft Skills : The software developer's life manual) -
Python 機器學習 (Python Machine Learning)$580$452 -
網站擷取|使用 Python (Web Scraping with Python: Collecting Data from the Modern Web)$580$458 -
今天不學機器學習,明天就被機器取代:從 Python 入手+演算法$590$502 -
Git 團隊使用手冊 (Git for Teams: A User-Centered Approach to Creating Efficient Workflows in Git)$580$458 -
Python 自動化的樂趣|搞定重複瑣碎 & 單調無聊的工作 (中文版) (Automate the Boring Stuff with Python: Practical Programming for Total Beginners)$500$425 -
深度學習快速入門 — 使用 TensorFlow (Getting started with TensorFlow)
$360$281 -
演算法技術手冊, 2/e (Algorithms in a Nutshell: A Practical Guide, 2/e)$580$458 -
圖解雲端技術|基礎架構x運作原理 x API$480$379 -
MIS 網管達人的工具箱, 3/e$560$476 -
七天學會設計模式:設計模式也可以這樣學$320$250 -
從人到人工智慧,破解 AI 革命的 68個核心概念:實戰專家全圖解 × 人腦不被電腦淘汰的關鍵思考$360$284 -
無瑕的程式碼-敏捷完整篇-物件導向原則、設計模式與 C# 實踐 (Agile principles, patterns, and practices in C#)$790$616 -
Effective C# 中文版 | 寫出良好 C# 程式的 50個具體做法, 3/e (Effective C# : 50 Specific Ways to Improve Your C#(Covers C# 6.0), 3/e)$450$356 -
Effective SQL 中文版 | 寫出良好 SQL 的 61個具體做法 (Effective SQL : 61 Specific Ways to Write Better SQL)$450$356 -
TensorFlow + Keras 深度學習人工智慧實務應用$590$460 -
寫程式前就該懂的演算法 ─ 資料分析與程式設計人員必學的邏輯思考術 (Grokking Algorithms: An illustrated guide for programmers and other curious people)$390$308 -
駭客退散!站長、網管一定要知道的網站漏洞診斷術$480$379
商品描述
Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition -- as well as some we don't yet use everyday, including driverless cars. It is the basis of the new approach in computing where we do not write programs but collect data; the idea is to learn the algorithms for the tasks automatically from data. As computing devices grow more ubiquitous, a larger part of our lives and work is recorded digitally, and as "Big Data" has gotten bigger, the theory of machine learning -- the foundation of efforts to process that data into knowledge -- has also advanced. In this book, machine learning expert Ethem Alpaydin offers a concise overview of the subject for the general reader, describing its evolution, explaining important learning algorithms, and presenting example applications.
Alpaydin offers an account of how digital technology advanced from number-crunching mainframes to mobile devices, putting today's machine learning boom in context. He describes the basics of machine learning and some applications; the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances, with such applications as customer segmentation and learning recommendations; and reinforcement learning, when an autonomous agent learns act so as to maximize reward and minimize penalty. Alpaydin then considers some future directions for machine learning and the new field of "data science," and discusses the ethical and legal implications for data privacy and security.
商品描述(中文翻譯)
今天,機器學習是我們每天使用的一系列應用的基礎,從產品推薦到語音識別——以及一些我們尚未每天使用的應用,包括無人駕駛汽車。這是計算的新方法的基礎,我們不再編寫程式,而是收集數據;其理念是自動從數據中學習任務的演算法。隨著計算設備變得越來越普及,我們生活和工作的更大部分被數位化記錄,而隨著「大數據」的增長,機器學習的理論——這是將數據處理成知識的努力的基礎——也在不斷進步。在這本書中,機器學習專家 Ethem Alpaydin 為一般讀者提供了該主題的簡明概述,描述了其演變,解釋了重要的學習演算法,並展示了示例應用。
Alpaydin 描述了數位技術如何從數據處理的主機進步到行動裝置,將今天的機器學習熱潮置於背景中。他介紹了機器學習的基本概念和一些應用;機器學習演算法在模式識別中的應用;受人腦啟發的人工神經網絡;學習實例之間關聯的演算法,應用包括客戶細分和學習推薦;以及強化學習,當自主代理學習如何行動以最大化獎勵和最小化懲罰。接著,Alpaydin 考慮了機器學習的一些未來方向以及「數據科學」這一新領域,並討論了數據隱私和安全的倫理及法律影響。
