Computational Thinking (Paperback)
暫譯: 計算思維 (平裝本)
Denning, Peter J., Tedre, Matti
- 出版商: Summit Valley Press
- 出版日期: 2019-05-14
- 售價: $730
- 貴賓價: 9.5 折 $694
- 語言: 英文
- 頁數: 264
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0262536560
- ISBN-13: 9780262536561
-
相關分類:
Computer-Science、Computer-Science
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
無瑕的程式碼-敏捷軟體開發技巧守則 + 番外篇-專業程式設計師的生存之道 (雙書合購)$940$700 -
資料採礦之技術及應用 (Excel 實例演練)$689$655 -
Common Sense, the Turing Test, and the Quest for Real AI (Hardcover)$1,130$1,074 -
Thinking as Computation: A First Course (Paperback)$1,500$1,425 -
Data Science (Paperback)$760$722 -
Natural Language Processing in Action: Understanding, analyzing, and generating text with Python (Paperback)$1,760$1,672 -
超圖解 Arduino 互動設計入門, 4/e$680$578 -
Computational Thinking and Coding for Every Student: The Teacher's Getting-Started Guide (Paperback)$1,250$1,188 -
精通 Python|運用簡單的套件進行現代運算, 2/e (Introducing Python: Modern Computing in Simple Packages, 2/e)$880$695 -
提升程式設計師的面試力|189道面試題目與解答, 6/e (修訂版) (Cracking the Coding Interview : 189 Programming Questions and Solutions, 6/e)$980$774 -
軟體架構原理|工程方法 (Fundamentals of Software Architecture: A Comprehensive Guide to Patterns, Characteristics, and Best Practices)$680$537 -
超圖解 ESP32 深度實作$880$695 -
資料科學的建模基礎 : 別急著 coding!你知道模型的陷阱嗎?$599$473 -
全中文自然語言處理:Pre-Trained Model 方法最新實戰$880$695 -
Transformers for Natural Language Processing : Build, train, and fine-tune deep neural network architectures for NLP with Python, PyTorch, 2/e (Paperback)$2,980$2,831 -
Good Code, Bad Code|寫出高品質的程式碼 (Good Code, Bad Code: Think Like a Software Engineer)$520$411 -
Clean Architecture 無瑕的程式碼-整潔的軟體設計與架構篇 + 實作篇-在整潔的架構上弄髒你的手 (雙書合購)$1,080$820 -
軟體專案估算$620$484 -
逆思維:華頓商學院最具影響力的教授,突破人生盲點的全局思考$420$378 -
Google 的軟體工程之道|從程式設計經驗中吸取教訓 (Software Engineering at Google)$880$695 -
你就是不寫測試才會沒時間:Kuma 的單元測試實戰 -- Java篇(iThome鐵人賽系列書)$650$507 -
ChatGPT 4 萬用手冊:超強外掛、Prompt 範本、Line Bot、OpenAI API、Midjourney、Stable Diffusion$630$498 -
AI 和 ChatGPT 人類和機器共生的未來$580$458 -
深入淺出 Java 程式設計, 3/e (Head First Java, 3/e)$980$774 -
ChatGPT 與 AI 繪圖效率大師(第二版):添加 GPT-4、Bing Chat、ChatGPT plugins 等全新章節,從日常到職場全方位應用,打造AI極簡新生活$690$538
相關主題
商品描述
An introduction to computational thinking that traces a genealogy beginning centuries before the digital computer.
A few decades into the digital era, scientists discovered that thinking in terms of computation made possible an entirely new way of organizing scientific investigation; eventually, every field had a computational branch: computational physics, computational biology, computational sociology. More recently, "computational thinking" has become part of the K-12 curriculum. But what is computational thinking? This volume in the MIT Press Essential Knowledge series offers an accessible overview, tracing a genealogy that begins centuries before digital computers and portraying computational thinking as pioneers of computing have described it.
The authors explain that computational thinking (CT) is not a set of concepts for programming; it is a way of thinking that is honed through practice: the mental skills for designing computations to do jobs for us, and for explaining and interpreting the world as a complex of information processes. Mathematically trained experts (known as "computers") who performed complex calculations as teams engaged in CT long before electronic computers. The authors identify six dimensions of today's highly developed CT--methods, machines, computing education, software engineering, computational science, and design--and cover each in a chapter. Along the way, they debunk inflated claims for CT and computation while making clear the power of CT in all its complexity and multiplicity.
商品描述(中文翻譯)
計算思維的介紹,追溯其起源,早在數世紀之前的數位電腦出現之前。
數位時代幾十年後,科學家發現以計算為思考方式使得組織科學研究的方式完全改變;最終,每個領域都有了計算分支:計算物理、計算生物、計算社會學。最近,「計算思維」已成為K-12課程的一部分。但什麼是計算思維?這本MIT Press Essential Knowledge系列的著作提供了一個易於理解的概述,追溯其起源,早在數位電腦之前的幾個世紀,並描繪計算思維如同計算先驅所描述的那樣。
作者解釋說,計算思維(CT)並不是一組編程的概念;它是一種通過實踐磨練出來的思考方式:設計計算以為我們完成工作的心理技能,以及解釋和詮釋世界作為一個複雜的信息處理過程。數學訓練的專家(被稱為「計算者」)在電子計算機出現之前就已經以團隊的形式進行複雜計算,並參與計算思維。作者確定了當今高度發展的計算思維的六個維度——方法、機器、計算教育、軟體工程、計算科學和設計——並在每一章中進行探討。在此過程中,他們揭穿了對計算思維和計算的誇大聲稱,同時清楚地表明計算思維在其複雜性和多樣性中的力量。