Probabilistic Machine Learning for Civil Engineers
暫譯: 土木工程師的機率機器學習
Goulet, James-A
- 出版商: Summit Valley Press
- 出版日期: 2020-04-14
- 售價: $2,010
- 貴賓價: 9.5 折 $1,910
- 語言: 英文
- 頁數: 304
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0262538709
- ISBN-13: 9780262538701
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,188Fedora 11 and Red Hat Enterprise Linux Bible (Paperback) -
離散數學 最新修訂版$800$632 -
Python 設計模式深入解析 (Mastering Python Design Patterns)$360$281 -
不再聽不懂!圖解網站建置與開發$450$356 -
Python 函式庫語法範例字典$450$383 -
演算法之美:隱藏在資料結構背後的原理 (C++版)$650$507 -
為你自己學 Git$500$425 -
Hands-On Convolutional Neural Networks with TensorFlow: Solve computer vision problems with modeling in TensorFlow and Python.$1,290$1,226 -
Python 技術者們 - 實踐! 帶你一步一腳印由初學到精通$650$553 -
Python 與 LINE Bot 機器人全面實戰特訓班 (附203分鐘影音教學/範例程式)$520$411 -
Python 技術者們 - 練功!老手帶路教你精通正宗 Python 程式 (The Quick Python Book, 3/e)$780$663 -
設計師都該懂的包容性網頁 UI/UX 設計模式:知名設計師教你親和性網頁的實作祕密$450$351 -
邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 2/e (How Linux Works: What Every Superuser Should Know, 2/e)$600$468 -
JavaScript 技術手冊$560$476 -
Mathematics for Machine Learning (Paperback)$1,520$1,490 -
PowerShell 流程自動化攻略 (Powershell for Sysadmins: A Hands-On Guide to Automating Your Workflow)$500$425 -
Deep Learning from the Basics$1,500$1,425 -
精通資料視覺化 : 用試算表與程式說故事 (Hands-On Data Visualization: Interactive Storytelling from Spreadsheets to Code)$680$537 -
打下最紮實 AI 基礎不依賴套件:手刻機器學習神經網路穩健前進$1,200$948 -
強健的 Python|撰寫潔淨且可維護的程式碼 (Robust Python: Write Clean and Maintainable Code)$680$537 -
Template Metaprogramming with C++: Learn everything about C++ templates and unlock the power of template metaprogramming (Paperback)$1,830$1,739 -
邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 3/e (How Linux Works : What Every Superuser Should Know, 3/e)$780$608 -
精通無瑕程式碼:工程師也能斷捨離!消除複雜度、提升效率的 17個關鍵技法 (The Art of Clean Code: Best Practices to Eliminate Complexity and Simplify Your Life)$600$468 -
Debunking C++ Myths: Embark on an insightful journey to uncover the truths behind popular C++ myths and misconceptions (Paperback)$1,500$1,425 -
LLM 語意理解與生成技術完全開發 (Hands-On Large Language Models)$980$774
商品描述
An introduction to key concepts and techniques in probabilistic machine learning for civil engineering students and professionals; with many step-by-step examples, illustrations, and exercises.
This book introduces probabilistic machine learning concepts to civil engineering students and professionals, presenting key approaches and techniques in a way that is accessible to readers without a specialized background in statistics or computer science. It presents different methods clearly and directly, through step-by-step examples, illustrations, and exercises. Having mastered the material, readers will be able to understand the more advanced machine learning literature from which this book draws.
The book presents key approaches in the three subfields of probabilistic machine learning: supervised learning, unsupervised learning, and reinforcement learning. It first covers the background knowledge required to understand machine learning, including linear algebra and probability theory. It goes on to present Bayesian estimation, which is behind the formulation of both supervised and unsupervised learning methods, and Markov chain Monte Carlo methods, which enable Bayesian estimation in certain complex cases. The book then covers approaches associated with supervised learning, including regression methods and classification methods, and notions associated with unsupervised learning, including clustering, dimensionality reduction, Bayesian networks, state-space models, and model calibration. Finally, the book introduces fundamental concepts of rational decisions in uncertain contexts and rational decision-making in uncertain and sequential contexts. Building on this, the book describes the basics of reinforcement learning, whereby a virtual agent learns how to make optimal decisions through trial and error while interacting with its environment.
商品描述(中文翻譯)
為土木工程學生和專業人士介紹機率機器學習的關鍵概念和技術;包含許多逐步示例、插圖和練習。
本書向土木工程學生和專業人士介紹機率機器學習的概念,以易於理解的方式呈現關鍵方法和技術,適合沒有統計或計算機科學專業背景的讀者。它通過逐步示例、插圖和練習清晰而直接地呈現不同的方法。掌握這些材料後,讀者將能夠理解本書所引用的更高級的機器學習文獻。
本書介紹了機率機器學習三個子領域的關鍵方法:監督學習、非監督學習和強化學習。首先涵蓋理解機器學習所需的背景知識,包括線性代數和機率論。接著介紹貝葉斯估計,這是監督學習和非監督學習方法的基礎,並介紹馬可夫鏈蒙地卡羅方法,這些方法在某些複雜情況下能夠實現貝葉斯估計。然後,本書涵蓋與監督學習相關的方法,包括迴歸方法和分類方法,以及與非監督學習相關的概念,包括聚類、降維、貝葉斯網絡、狀態空間模型和模型校準。最後,本書介紹在不確定情境下的理性決策基本概念,以及在不確定和序列情境下的理性決策。基於此,本書描述強化學習的基本概念,虛擬代理如何通過與環境互動進行試錯學習以做出最佳決策。