Probability, Statistics, and Random Processes for Engineers , 4/e (IE-Paperback)
            
暫譯: 工程師的機率、統計與隨機過程(第4版)
        
        Henry Stark , John Woods
- 出版商: Prentice Hall
 - 出版日期: 2011-12-31
 - 售價: $1,250
 - 語言: 英文
 - 頁數: 704
 - ISBN: 0273752286
 - ISBN-13: 9780273752288
 - 
    相關分類:
    
      機率統計學 Probability-and-statistics
 
立即出貨 (庫存 < 3)
買這商品的人也買了...
- 
                
                  
                  
                $990Antennas and Propagation for Wireless Communication Systems, 2/e (Hardcover) - 
                
                  
                  
                Discrete-Time Signal Processing, 3/e (IE-Paperback)$1,176$1,152 - 
                
                  
                  
                C++ 教學手冊, 3/e$640$544 - 
                
                  JavaScript & jQuery: The Missing Manual 國際中文版, 2/e
$580$458 - 
                
                  
                  
                Data Communications and Networking, 5/e (IE-Paperback)$1,230$1,205 - 
                
                  
                  
                PHP、MySQL、JavaScript 與 CSS 學習手冊, 2/e (Learning PHP, MySQL, JavaScript, and CSS: A Step-by-Step Guide to Creating Dynamic Websites, 2/e)$880$695 - 
                
                  
                  
                Android App 程式設計教本之無痛起步$480$408 - 
                
                  
                  
                Arduino UNO R3 開發板(副廠相容版)附傳輸線$400$380 - 
                
                  
                  
                程式設計大師智慧結晶-與主流程式語言的創始者對話 (Masterminds of Programming: Conversations with the Creators of Major Programming Languages)$580$458 - 
                
                  
                  
                iClone 5.5 動畫大師─讓你輕鬆學會製作專業級 3D 動畫$520$442 - 
                
                  
                  
                ASP.NET MVC 5 網站開發美學$780$616 - 
                
                  
                  
                LinkIt ONE 物聯網實作入門$280$252 - 
                
                  
                  
                Android 5.x App 開發教戰手冊-使用 Android Studio 開發$520$411 - 
                
                  
                  
                OpenCV 程式設計參考手冊$620$490 - 
                
                  
                  
                精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 - 
                
                  
                  
                完整學會 Git, GitHub, Git Server 的24堂課$360$284 - 
                
                  
                  
                R 語言-邁向 Big Data 之路$580$493 - 
                
                  
                  
                JavaScript 錦囊妙計, 2/e (JavaScript Cookbook, 2/e)$880$695 - 
                
                  
                  
                物聯網如何改變世界(The Internet of Things: How Smart TVs, Smart Cars, Smart Homes, and Smart Cities Are Changing the World)$380$323 - 
                
                  
                  
                無線通訊系統概論 : 行動通訊與網路, 4/e (Introduction to Wireless and Mobile Systems, 4/e)$650$618 - 
                
                  
                  
                機器人雜誌 ROBOCON Magazine 2013/5 月號(No.10)$260$234 - 
                
                  
                  
                Computer Systems: A Programmer's Perspective, 3/e (IE-Paperback)$2,980$2,920 - 
                
                  
                  
                Fundamental Statistical Inference : A Computational Approach (Hardcover)$1,680$1,646 - 
                
                  
                  
                Principles of Mathematical Analysis, 3/e (2023 Edition)$800$784 - 
                
                  
                  
                Financial Accounting with IFRS Wiley Custom Edition, 5/e (Paperback)$1,580$1,548 
商品描述
<內容簡介>
1 Introduction to Probability
- 1.1 Introduction: Why Study Probability?
 - 1.2 The Different Kinds of Probability
 - 1.3 Misuses, Miscalculations, and Paradoxes in Probability
 - 1.4 Sets, Fields, and Events
 - 1.5 Axiomatic Definition of Probability
 - 1.6 Joint, Conditional, and Total Probabilities; Independence
 - 1.7 Bayes’ Theorem and Applications
 - 1.8 Combinatorics 38
 - 1.9 Bernoulli Trials–Binomial and Multinomial Probability Laws
 - 1.10 Asymptotic Behavior of the Binomial Law: The Poisson Law
 - 1.11 Normal Approximation to the Binomial Law
 
2 Random Variables
- 2.1 Introduction
 - 2.2 Definition of a Random Variable
 - 2.3 Cumulative Distribution Function
 - 2.4 Probability Density Function (pdf)
 - 2.5 Continuous, Discrete, and Mixed Random Variables
 - 2.6 Conditional and Joint Distributions and Densities
 - 2.7 Failure Rates
 
3 Functions of Random Variables
- 3.1 Introduction
 - 3.2 Solving Problems of the Type Y = g(X)
 - 3.3 Solving Problems of the Type Z = g(X, Y )
 - 3.4 Solving Problems of the Type V = g(X, Y ), W = h(X, Y )
 - 3.5 Additional Examples
 
4 Expectation and Moments
- 4.1 Expected Value of a Random Variable
 - 4.2 Conditional Expectations
 - 4.3 Moments of Random Variables
 - 4.4 Chebyshev and Schwarz Inequalities
 - 4.5 Moment-Generating Functions
 - 4.6 Chernoff Bound
 - 4.7 Characteristic Functions
 - 4.8 Additional Examples
 
5 Random Vectors
- 5.1 Joint Distribution and Densities
 - 5.2 Multiple Transformation of Random Variables
 - 5.3 Ordered Random Variables
 - 5.4 Expectation Vectors and Covariance Matrices
 - 5.5 Properties of Covariance Matrices
 - 5.6 The Multidimensional Gaussian (Normal) Law
 - 5.7 Characteristic Functions of Random Vectors
 
6 Statistics: Part 1 Parameter Estimation
- 6.1 Introduction
 - 6.2 Estimators
 - 6.3 Estimation of the Mean
 - 6.4 Estimation of the Variance and Covariance
 - 6.5 Simultaneous Estimation of Mean and Variance
 - 6.6 Estimation of Non-Gaussian Parameters from Large Samples
 - 6.7 Maximum Likelihood Estimators
 - 6.8 Ordering, more on Percentiles, Parametric Versus Nonparametric Statistics
 - 6.9 Estimation of Vector Means and Covariance Matrices
 - 6.10 Linear Estimation of Vector Parameters
 
7 Statistics: Part 2 Hypothesis Testing
- 7.1 Bayesian Decision Theory
 - 7.2 Likelihood Ratio Test
 - 7.3 Composite Hypotheses
 - 7.4 Goodness of Fit
 - 7.5 Ordering, Percentiles, and Rank
 
8 Random Sequences
- 8.1 Basic Concepts
 - 8.2 Basic Principles of Discrete-Time Linear Systems
 - 8.3 Random Sequences and Linear Systems
 - 8.4 WSS Random Sequences
 - 8.5 Markov Random Sequences
 - 8.6 Vector Random Sequences and State Equations
 - 8.7 Convergence of Random Sequences
 - 8.8 Laws of Large Numbers
 
9 Random Processes
- 9.1 Basic Definitions
 - 9.2 Some Important Random Processes
 - 9.3 Continuous-Time Linear Systems with Random Inputs
 - 9.4 Some Useful Classifications of Random Processes
 - 9.5 Wide-Sense Stationary Processes and LSI Systems
 - 9.6 Periodic and Cyclostationary Processes
 - 9.7 Vector Processes and State Equations
 
Appendix A Review of Relevant Mathematics
- A.1 Basic Mathematics
 - A.2 Continuous Mathematics
 - A.3 Residue Method for Inverse Fourier Transformation
 - A.4 Mathematical Induction
 
Appendix B Gamma and Delta Functions
- B.1 Gamma Function
 - B.2 Incomplete Gamma Function
 - B.3 Dirac Delta Function
 
Appendix C Functional Transformations and Jacobians
- C.1 Introduction
 - C.2 Jacobians for n = 2
 - C.3 Jacobian for General n
 
Appendix D Measure and Probability
- D.1 Introduction and Basic Ideas
 - D.2 Application of Measure Theory to Probability
 
Appendix E Sampled Analog Waveforms and Discrete-time Signals
Appendix F Independence of Sample Mean and Variance for Normal Random Variables
Appendix G Tables of Cumulative Distribution Functions: the Normal, Student t, Chi-square, and F
Index
商品描述(中文翻譯)
內容簡介
1 機率導論
1.1 導言:為什麼要學習機率?
1.2 機率的不同類型
1.3 機率中的誤用、誤算和悖論
1.4 集合、場和事件
1.5 機率的公理定義
1.6 聯合機率、條件機率和總機率;獨立性
1.7 貝葉斯定理及其應用
1.8 組合學
1.9 伯努利試驗—二項式和多項式機率法則
1.10 二項法則的漸近行為:泊松法則
1.11 二項法則的正態近似
2 隨機變數
2.1 導言
2.2 隨機變數的定義
2.3 累積分佈函數
2.4 機率密度函數 (pdf)
2.5 連續、離散和混合隨機變數
2.6 條件和聯合分佈及密度
2.7 故障率
3 隨機變數的函數
3.1 導言
3.2 解決類型為 Y = g(X) 的問題
3.3 解決類型為 Z = g(X, Y) 的問題