Explainable Deep Learning AI: Methods and Challenges
暫譯: 可解釋的深度學習AI:方法與挑戰

Benois-Pineau, Jenny, Bourqui, Romain, Petkovic, Dragutin

  • 出版商: Academic Press
  • 出版日期: 2023-02-24
  • 售價: $4,290
  • 貴賓價: 9.5$4,076
  • 語言: 英文
  • 頁數: 346
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0323960987
  • ISBN-13: 9780323960984
  • 相關分類: DeepLearning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Explainable Deep Learning AI: Methods and Challenges presents the latest works of leading researchers in the XAI area, offering an overview of the XAI area, along with several novel technical methods and applications that address explainability challenges for deep learning AI systems. The book overviews XAI and then covers a number of specific technical works and approaches for deep learning, ranging from general XAI methods to specific XAI applications, and finally, with user-oriented evaluation approaches. It also explores the main categories of explainable AI - deep learning, which become the necessary condition in various applications of artificial intelligence.

The groups of methods such as back-propagation and perturbation-based methods are explained, and the application to various kinds of data classification are presented.

商品描述(中文翻譯)

《可解釋的深度學習人工智慧:方法與挑戰》介紹了在可解釋人工智慧(XAI)領域的領先研究者的最新研究成果,提供了XAI領域的概述,以及幾種新穎的技術方法和應用,旨在解決深度學習人工智慧系統的可解釋性挑戰。本書首先概述了XAI,然後涵蓋了一系列針對深度學習的具體技術工作和方法,從一般的XAI方法到特定的XAI應用,最後介紹以使用者為導向的評估方法。它還探討了可解釋人工智慧的主要類別——深度學習,這成為各種人工智慧應用的必要條件。

本書解釋了如反向傳播(back-propagation)和基於擾動(perturbation-based)的方法等方法群,並展示了這些方法在各種數據分類中的應用。

最後瀏覽商品 (15)