Introduction to Bayesian Data Analysis for Cognitive Science
暫譯: 認識貝葉斯數據分析於認知科學的應用

Nicenboim, Bruno, Schad, Daniel J., Vasishth, Shravan

  • 出版商: CRC
  • 出版日期: 2025-08-21
  • 售價: $7,120
  • 貴賓價: 9.5$6,764
  • 語言: 英文
  • 頁數: 608
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 0367358514
  • ISBN-13: 9780367358518
  • 相關分類: Data Science
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book introduces Bayesian data analysis and Bayesian cognitive modeling to students and researchers in cognitive science (e.g., linguistics, psycholinguistics, psychology, computer science), with a particular focus on modeling data from planned experiments. The book relies on the probabilistic programming language Stan and the R package brms, which is a front-end to Stan. The book only assumes that the reader is familiar with the statistical programming language R, and has basic high school exposure to pre-calculus mathematics; some of the important mathematical constructs needed for the book are introduced in the first chapter.

Through this book, the reader will be able to develop a practical ability to apply Bayesian modeling within their own field. The book begins with an informal introduction to foundational topics such as probability theory, and univariate and bi-/multivariate discrete and continuous random variables. Then, the application of Bayes' rule for statistical inference is introduced with several simple analytical examples that require no computing software; the main insight here is that the posterior distribution of a parameter is a compromise between the prior and the likelihood functions. The book then gradually builds up the regression framework using the brms package in R, ultimately leading to hierarchical regression modeling (aka the linear mixed model). Along the way, there is detailed discussion about the topic of prior selection, and developing a well-defined workflow. Later chapters introduce the Stan programming language, and cover advanced topics using practical examples: contrast coding, model comparison using Bayes factors and cross-validation, hierarchical models and reparameterization, defining custom distributions, measurement error models and meta-analysis, and finally, some examples of cognitive models: multinomial processing trees, finite mixture models, and accumulator models. Additional chapters, appendices, and exercises are provided as online materials and can be accessed here: https: //github.com/bnicenboim/bayescogsci.

商品描述(中文翻譯)

這本書向認知科學(例如語言學、心理語言學、心理學、計算機科學)的學生和研究人員介紹貝葉斯數據分析和貝葉斯認知建模,特別專注於從計劃實驗中建模數據。這本書依賴於概率編程語言 Stan 和 R 套件 brms,後者是 Stan 的前端。書中僅假設讀者熟悉統計編程語言 R,並對高中數學的預備微積分有基本的了解;書中所需的一些重要數學概念會在第一章中介紹。

通過這本書,讀者將能夠在自己的領域內發展應用貝葉斯建模的實用能力。書的開頭以非正式的方式介紹了基礎主題,如概率論,以及單變量和雙/多變量的離散和連續隨機變量。接著,介紹了貝葉斯定理在統計推斷中的應用,並提供了幾個不需要計算軟件的簡單分析示例;這裡的主要見解是,參數的後驗分佈是先驗和似然函數之間的妥協。然後,書中逐步建立使用 R 中的 brms 套件的回歸框架,最終導向層級回歸建模(即線性混合模型)。在此過程中,詳細討論了先驗選擇的主題以及開發明確的工作流程。後面的章節介紹了 Stan 編程語言,並使用實際示例涵蓋高級主題:對比編碼、使用貝葉斯因子和交叉驗證的模型比較、層級模型和重新參數化、定義自訂分佈、測量誤差模型和元分析,最後還有一些認知模型的示例:多項處理樹、有限混合模型和累加器模型。附加章節、附錄和練習作為在線材料提供,可以在這裡訪問:https://github.com/bnicenboim/bayescogsci。

作者簡介

Bruno Nicenboim is assistant professor in the department of Cognitive Science and Artificial Intelligence at Tilburg University in the Netherlands, working within the area of computational psycholinguistics.

Daniel J. Schad is a cognitive psychologist and is professor of Quantitative Methods at the HMU Health
and Medical University in Potsdam, Germany.

Shravan Vasishth is professor of psycholinguistics at the department of Linguistics at the University of Potsdam, Germany; he is a chartered statistician (Royal Statistical Society, UK).

作者簡介(中文翻譯)

布魯諾·尼森博伊姆是荷蘭蒂爾堡大學認知科學與人工智慧系的助理教授,專注於計算心理語言學領域。
丹尼爾·J·沙德是認知心理學家,並且是德國波茨坦HMU健康與醫學大學的定量方法教授。
施拉萬·瓦西斯特是德國波茨坦大學語言學系的心理語言學教授;他是英國皇家統計學會的特許統計師。