Deep Learning in Visual Computing: Explanations and Examples

Ugail, Hassan

  • 出版商: CRC
  • 出版日期: 2022-07-07
  • 售價: $2,710
  • 貴賓價: 9.5$2,575
  • 語言: 英文
  • 頁數: 134
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 036754962X
  • ISBN-13: 9780367549626
  • 相關分類: DeepLearning
  • 海外代購書籍(需單獨結帳)
    無現貨庫存(No stock available)

商品描述

Deep learning is an artificially intelligent entity that teaches itself and can be utilized to make predictions. Deep learning mimics the human brain and provides learned solutions addressing many challenging problems in the area of visual computing. From object recognition to image classification for diagnostics, deep learning has shown the power of artificial deep neural networks in solving real world visual computing problems with super-human accuracy. The introduction of deep learning into the field of visual computing has meant to be the death of most of the traditional image processing and computer vision techniques. Today, deep learning is considered to be the most powerful, accurate, efficient and effective method with the potential to solve many of the most challenging problems in visual computing.

This book provides an insight into deep machine learning and the challenges in visual computing to tackle the novel method of machine learning. It introduces readers to the world of deep neural network architectures with easy-to-understand explanations. From face recognition to image classification for diagnosis of cancer, the book provides unique examples of solved problems in applied visual computing using deep learning. Interested and enthusiastic readers of modern machine learning methods will find this book easy to follow. They will find it a handy guide for designing and implementing their own projects in the field of visual computing.

商品描述(中文翻譯)

深度學習是一種人工智能實體,它可以自我學習並用於進行預測。深度學習模仿人腦,提供了在視覺計算領域中解決許多具有挑戰性問題的學習解決方案。從物體識別到用於診斷的圖像分類,深度學習展示了人工深度神經網絡在解決現實世界視覺計算問題時具有超人精度的能力。深度學習的引入使得傳統的圖像處理和計算機視覺技術走向衰落。如今,深度學習被認為是最強大、準確、高效和有效的方法,有潛力解決許多視覺計算中最具挑戰性的問題。

本書提供了對深度機器學習和視覺計算中的挑戰的深入了解,以應對機器學習的新方法。它以易於理解的解釋介紹了深度神經網絡架構的世界。從人臉識別到用於癌症診斷的圖像分類,本書提供了應用視覺計算中使用深度學習解決問題的獨特示例。對於對現代機器學習方法感興趣和熱情的讀者來說,本書易於理解。他們將發現本書是在視覺計算領域設計和實施自己項目的實用指南。

作者簡介

Prof Hassan Ugail is Director of the Centre for Visual Computing at the University of Bradford, UK. He is a renowned computer scientist in the area of visual computing and artificial intelligence (AI). He is an advocate of AI for helping to tackle real world issues in the areas of digital health, innovative engineering and sustainable societies in general. More specifically, he works in the area of human biometrics especially the development of cutting-edge AI solutions for biometric face recognition. His most recent work in this area includes helping to unravel the real identity of the two Russian spies at the heart of the Salisbury Novichok poisoning case - one of the biggest international stories of 2018.

作者簡介(中文翻譯)

Prof Hassan Ugail是英國布拉德福德大學視覺計算中心的主任。他是視覺計算和人工智慧領域的知名計算機科學家。他主張利用人工智慧來解決數字健康、創新工程和可持續社會等實際問題。更具體地說,他在人體生物特徵識別方面進行研究,尤其是開發尖端的人工智慧解決方案用於生物特徵臉部識別。他最近在這個領域的工作包括幫助揭示薩利斯伯里諾維奇中毒案核心的兩名俄羅斯間諜的真實身份,這是2018年最重要的國際新聞之一。