Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics
暫譯: 數值演算法:電腦視覺、機器學習與圖形的技術方法
Solomon, Justin
- 出版商: A K Peters
- 出版日期: 2020-06-30
- 售價: $2,450
- 貴賓價: 9.5 折 $2,328
- 語言: 英文
- 頁數: 400
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0367575639
- ISBN-13: 9780367575632
-
相關分類:
Machine Learning、Algorithms-data-structures、Computer Vision
-
其他版本:
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics (Hardcover)
相關主題
商品描述
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic design from a practical standpoint and provides insight into the theoretical tools needed to support these skills.
The book covers a wide range of topics--from numerical linear algebra to optimization and differential equations--focusing on real-world motivation and unifying themes. It incorporates cases from computer science research and practice, accompanied by highlights from in-depth literature on each subtopic. Comprehensive end-of-chapter exercises encourage critical thinking and build students' intuition while introducing extensions of the basic material.
The text is designed for advanced undergraduate and beginning graduate students in computer science and related fields with experience in calculus and linear algebra. For students with a background in discrete mathematics, the book includes some reminders of relevant continuous mathematical background.
商品描述(中文翻譯)
《數值演算法:電腦視覺、機器學習與圖形學的方法》為現代電腦科學家提供了一種新的數值分析方法。這本教科書使用來自廣泛計算任務的例子,包括數據處理、計算攝影和動畫,從實用的角度介紹數值建模和演算法設計,並提供支持這些技能所需的理論工具的見解。
本書涵蓋了廣泛的主題——從數值線性代數到優化和微分方程——專注於現實世界的動機和統一主題。它結合了來自計算機科學研究和實踐的案例,並附有每個子主題深入文獻的重點。全面的章末練習鼓勵批判性思考,並在介紹基本材料的擴展時培養學生的直覺。
本書旨在為具有微積分和線性代數經驗的高年級本科生和初級研究生提供學習資源,特別是在計算機科學及相關領域。對於具有離散數學背景的學生,本書還包括一些相關連續數學背景的提醒。
作者簡介
Justin Solomon is an assistant professor in the Department of Electrical Engineering and Computer Science at MIT, where he studies problems in shape analysis, machine learning, and graphics from a geometric perspective. He received a PhD in computer science from Stanford University, where he was also a lecturer for courses in graphics, differential geometry, and numerical methods. Subsequently he served as an NSF Mathematical Sciences Postdoctoral Fellow at Princeton's Program in Applied and Computational Mathematics. Before his graduate studies, he was a member of Pixar's Tools Research group.
作者簡介(中文翻譯)
賈斯廷·所羅門是麻省理工學院電機工程與計算機科學系的助理教授,他從幾何的角度研究形狀分析、機器學習和圖形學中的問題。他在史丹佛大學獲得計算機科學博士學位,並曾擔任圖形學、微分幾何和數值方法課程的講師。隨後,他在普林斯頓大學的應用與計算數學計劃中擔任國家科學基金會數學科學博士後研究員。在攻讀研究生學位之前,他是皮克斯工具研究小組的成員。