Fundamentals of Causal Inference: With R (Hardcover)

Brumback, Babette A.




One of the primary motivations for clinical trials and observational studies of humans is to infer cause and effect. Disentangling causation from confounding is of utmost importance. Fundamentals of Causal Inference explains and relates different methods of confounding adjustment in terms of potential outcomes and graphical models, including standardization, difference-in-differences estimation, the front-door method, instrumental variables estimation, and propensity score methods. It also covers effect-measure modification, precision variables, mediation analyses, and time-dependent confounding. Several real data examples, simulation studies, and analyses using R motivate the methods throughout. The book assumes familiarity with basic statistics and probability, regression, and R and is suitable for seniors or graduate students in statistics, biostatistics, and data science as well as PhD students in a wide variety of other disciplines, including epidemiology, pharmacy, the health sciences, education, and the social, economic, and behavioral sciences.

Beginning with a brief history and a review of essential elements of probability and statistics, a unique feature of the book is its focus on real and simulated datasets with all binary variables to reduce complex methods down to their fundamentals. Calculus is not required, but a willingness to tackle mathematical notation, difficult concepts, and intricate logical arguments is essential. While many real data examples are included, the book also features the Double What-If Study, based on simulated data with known causal mechanisms, in the belief that the methods are best understood in circumstances where they are known to either succeed or fail. Datasets, R code, and solutions to odd-numbered exercises are available at





Babette A. Brumback is Professor and Associate Chair for Education in the Department of Biostatistics at the University of Florida; she won the department's Outstanding Teacher Award for 2020-2021. A Fellow of the American Statistical Association, she has researched and applied methods for causal inference since 1998, specializing in methods for time-dependent confounding, complex survey samples and clustered data.


Babette A. Brumback是佛羅里達大學生物統計學系的教授兼教育副主任;她在2020-2021年獲得了該系的傑出教師獎。作為美國統計學會的會士,她自1998年以來一直從事因果推論的研究和應用方法,專注於處理時間相依混淆、複雜調查樣本和集群數據的方法。