Mixture Model-Based Classification
暫譯: 基於混合模型的分類
McNicholas, Paul D.
- 出版商: CRC
- 出版日期: 2020-12-18
- 售價: $2,610
- 貴賓價: 9.5 折 $2,480
- 語言: 英文
- 頁數: 236
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0367736950
- ISBN-13: 9780367736958
-
相關分類:
Data-mining
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,188Fedora 11 and Red Hat Enterprise Linux Bible (Paperback) -
離散數學 最新修訂版$800$632 -
Python 設計模式深入解析 (Mastering Python Design Patterns)$360$281 -
不再聽不懂!圖解網站建置與開發$450$356 -
Python 函式庫語法範例字典$450$356 -
演算法之美:隱藏在資料結構背後的原理 (C++版)$650$507 -
為你自己學 Git$500$425 -
Hands-On Convolutional Neural Networks with TensorFlow: Solve computer vision problems with modeling in TensorFlow and Python.$1,290$1,226 -
Python 技術者們 - 實踐! 帶你一步一腳印由初學到精通$650$553 -
Python 與 LINE Bot 機器人全面實戰特訓班 (附203分鐘影音教學/範例程式)$520$411 -
Python 技術者們 - 練功!老手帶路教你精通正宗 Python 程式 (The Quick Python Book, 3/e)$780$663 -
設計師都該懂的包容性網頁 UI/UX 設計模式:知名設計師教你親和性網頁的實作祕密$450$351 -
邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 2/e (How Linux Works: What Every Superuser Should Know, 2/e)$600$468 -
JavaScript 技術手冊$560$476 -
PowerShell 流程自動化攻略 (Powershell for Sysadmins: A Hands-On Guide to Automating Your Workflow)$500$425 -
Deep Learning from the Basics$1,500$1,425 -
精通資料視覺化 : 用試算表與程式說故事 (Hands-On Data Visualization: Interactive Storytelling from Spreadsheets to Code)$680$537 -
打下最紮實 AI 基礎不依賴套件:手刻機器學習神經網路穩健前進$1,200$948 -
強健的 Python|撰寫潔淨且可維護的程式碼 (Robust Python: Write Clean and Maintainable Code)$680$537 -
Template Metaprogramming with C++: Learn everything about C++ templates and unlock the power of template metaprogramming (Paperback)$1,830$1,739 -
邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 3/e (How Linux Works : What Every Superuser Should Know, 3/e)$780$608 -
精通無瑕程式碼:工程師也能斷捨離!消除複雜度、提升效率的 17個關鍵技法 (The Art of Clean Code: Best Practices to Eliminate Complexity and Simplify Your Life)$600$468 -
Hands-On Design Patterns with C++ : Solve common C++ problems with modern design patterns and build robust applications, 2/e (Paperback)$1,940$1,843 -
Debunking C++ Myths: Embark on an insightful journey to uncover the truths behind popular C++ myths and misconceptions (Paperback)$1,500$1,425 -
LLM 語意理解與生成技術完全開發 (Hands-On Large Language Models)$980$774
相關主題
商品描述
"This is a great overview of the field of model-based clustering and classification by one of its leading developers. McNicholas provides a resource that I am certain will be used by researchers in statistics and related disciplines for quite some time. The discussion of mixtures with heavy tails and asymmetric distributions will place this text as the authoritative, modern reference in the mixture modeling literature." (Douglas Steinley, University of Missouri)
Mixture Model-Based Classification is the first monograph devoted to mixture model-based approaches to clustering and classification. This is both a book for established researchers and newcomers to the field. A history of mixture models as a tool for classification is provided and Gaussian mixtures are considered extensively, including mixtures of factor analyzers and other approaches for high-dimensional data. Non-Gaussian mixtures are considered, from mixtures with components that parameterize skewness and/or concentration, right up to mixtures of multiple scaled distributions. Several other important topics are considered, including mixture approaches for clustering and classification of longitudinal data as well as discussion about how to define a cluster
Paul D. McNicholas is the Canada Research Chair in Computational Statistics at McMaster University, where he is a Professor in the Department of Mathematics and Statistics. His research focuses on the use of mixture model-based approaches for classification, with particular attention to clustering applications, and he has published extensively within the field. He is an associate editor for several journals and has served as a guest editor for a number of special issues on mixture models.
商品描述(中文翻譯)
「這是由該領域主要開發者之一所撰寫的模型基礎聚類和分類的精彩概述。McNicholas 提供了一個資源,我相信統計學及相關學科的研究人員將會長期使用。對於具有重尾和非對稱分佈的混合物的討論,將使這本書成為混合建模文獻中的權威現代參考。」(道格拉斯·斯坦利,密蘇里大學)
混合模型基礎分類是第一本專門針對基於混合模型的聚類和分類方法的專著。這本書適合既有的研究人員和該領域的新手。書中提供了混合模型作為分類工具的歷史,並廣泛考慮了高斯混合,包括因子分析器的混合和其他高維數據的方法。非高斯混合也被考慮,從參數化偏斜度和/或集中度的組件混合,到多個縮放分佈的混合。還考慮了幾個其他重要主題,包括用於縱向數據的聚類和分類的混合方法,以及如何定義聚類的討論。
保羅·D·麥克尼科拉斯是麥克馬斯特大學計算統計的加拿大研究主席,他是數學與統計系的教授。他的研究專注於基於混合模型的分類方法,特別關注聚類應用,並在該領域發表了大量的研究。他是幾本期刊的副編輯,並曾擔任多個關於混合模型的特刊的客座編輯。
作者簡介
Paul D. McNicholas is the Canada Research Chair in Computational Statistics at McMaster University, where he is a Professor in the Department of Mathematics and Statistics. His research focuses on the use of mixture model-based approaches for classification, with particular attention to clustering applications, and he has published extensively within the field. He is an associate editor for several journals and has served as a guest editor for a number of special issues on mixture models.
作者簡介(中文翻譯)
保羅·D·麥克尼科拉斯(Paul D. McNicholas)是麥克馬斯特大學(McMaster University)計算統計學的加拿大研究主席,並且是數學與統計系的教授。他的研究專注於基於混合模型的分類方法,特別關注於聚類應用,並在該領域發表了大量的研究成果。他是多本期刊的副編輯,並曾擔任多個關於混合模型的特刊的客座編輯。