Hyperbolic Partial Differential Equations
Alinhac, Serge
- 出版商: Springer
- 出版日期: 2009-06-29
- 售價: $2,790
- 貴賓價: 9.5 折 $2,651
- 語言: 英文
- 頁數: 150
- 裝訂: Quality Paper - also called trade paper
- ISBN: 038787822X
- ISBN-13: 9780387878225
-
相關分類:
微積分 Calculus
海外代購書籍(需單獨結帳)
相關主題
商品描述
The aim of this book is to present hyperbolic partial di?erential equations at an elementary level. In fact, the required mathematical background is only a third year university course on di?erential calculus for functions of several variables. No functional analysis knowledge is needed, nor any distribution theory (with the exception of shock waves mentioned below). k All solutions appearing in the text are piecewise classical C solutions. Beyond the simpli?cations it allows, there are several reasons for this choice: First, we believe that all main features of hyperbolic partial d- ferential equations (PDE) (well-posedness of the Cauchy problem, ?nite speed of propagation, domains of determination, energy inequalities, etc. ) canbedisplayedinthiscontext. Wehopethatthisbookitselfwillproveour belief. Second, allproperties, solutionformulas, andinequalitiesestablished here in the context of smooth functions can be readily extended to more general situations (solutions in Sobolev spaces or temperate distributions, etc. ) by simple standard procedures of functional analysis or distribution theory, which are "external" to the theory of hyperbolic equations: The deep mathematical content of the theorems is already to be found in the statements and proofs of this book. The last reason is this: We do hope that many readers of this book will eventually do research in the ?eld that seems to us the natural continuation of the subject: nonlinear hyp- bolic systems (compressible ?uids, general relativity theory, etc. ).
作者簡介
Serge Alinhac (1948-) received his PhD from l'Université Paris-Sud XI (Orsay). After teaching at l'Université Paris Diderot VII and Purdue University, he has been a professor of mathematics at l'Université Paris-Sud XI (Orsay) since 1978. He is the author of Blowup for Nonlinear Hyperbolic Equations (Birkhäuser, 1995) and Pseudo-differential Operators and the Nash-Moser Theorem (with P. Gérard, American Mathematical Society, 2007). His primary areas of research are linear and nonlinear partial differential equations.