Many-Sorted Algebras for Deep Learning and Quantum Technology
暫譯: 多類別代數在深度學習與量子技術中的應用

Giardina, Charles R.

  • 出版商: Morgan Kaufmann
  • 出版日期: 2024-02-05
  • 售價: $5,790
  • 貴賓價: 9.5$5,501
  • 語言: 英文
  • 頁數: 422
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0443136971
  • ISBN-13: 9780443136979
  • 相關分類: DeepLearning量子計算
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Many-Sorted Algebras for Deep Learning and Quantum Technology presents a precise and rigorous
description of basic concepts in quantum technologies and how they relate to deep learning and quantum theory. Current merging of quantum theory and deep learning techniques provides the need for a source that gives readers insights into the algebraic underpinnings of these disciplines. Although analytical, topological, probabilistic, as well as geometrical concepts are employed in many of these areas, algebra exhibits the principal thread; hence, this thread is exposed using many-sorted algebras. This book includes hundreds of well-designed examples that illustrate the intriguing concepts in quantum systems. Along with these examples are numerous visual displays. In particular, the polyadic graph shows the types or sorts of objects used in quantum or deep learning. It also illustrates all the inter and intra-sort operations needed in describing algebras. In brief, it provides the closure conditions. Throughout the book, all laws or equational identities needed in specifying an algebraic structure are precisely described.

商品描述(中文翻譯)

《多類別代數在深度學習與量子技術中的應用》提供了量子技術基本概念的精確且嚴謹的描述,以及這些概念如何與深度學習和量子理論相關聯。目前量子理論與深度學習技術的融合,促使讀者需要一個能深入了解這些學科代數基礎的來源。儘管在這些領域中使用了分析、拓撲、概率以及幾何等概念,但代數仍然是主要的線索;因此,這條線索透過多類別代數得以展現。本書包含數百個精心設計的範例,展示量子系統中引人入勝的概念。這些範例伴隨著大量的視覺展示。特別是,多元圖顯示了在量子或深度學習中使用的物件類型或類別。它還說明了描述代數所需的所有類別內部和類別之間的運算。簡而言之,它提供了封閉條件。在整本書中,所有指定代數結構所需的定律或方程式恆等式都被精確描述。