-
出版商:
Academic Press
-
出版日期:
2024-04-05
-
售價:
$6,970
-
貴賓價:
9.5 折
$6,622
-
語言:
英文
-
頁數:
326
-
裝訂:
Quality Paper - also called trade paper
-
ISBN:
0443185085
-
ISBN-13:
9780443185083
-
相關分類:
人工智慧
商品描述
Neuro-oncology broadly encompasses life-threatening brain and spinal cord malignancies, including primary lesions and lesions metastasizing to the central nervous system. It is well suited for diagnosis, classification, and prognosis as well as assessing treatment response. Radiomics and Radiogenomics (R-n-R) have become two central pillars in precision medicine for neuro-oncology.Radiomics is an approach to medical imaging used to extract many quantitative imaging features using different data characterization algorithms, while Radiogenomics, which has recently emerged as a novel mechanism in neuro-oncology research, focuses on the relationship of imaging phenotype and genetics of cancer. Due to the exponential progress of different computational algorithms, AI methods are composed to advance the precision of diagnostic and therapeutic approaches in neuro-oncology.The field of radiomics has been and definitely will remain at the lead of this emerging discipline due to its efficiency in the field of neuro-oncology. Several AI approaches applied to conventional and advanced medical imaging data from the perspective of radiomics are very efficient for tasks such as survival prediction, heterogeneity analysis of cancer, pseudo progression analysis, and infiltrating tumors. Radiogenomics advances our understanding and knowledge of cancer biology, letting noninvasive sampling of the molecular atmosphere with high spatial resolution along with a systems-level understanding of causal heterogeneous molecular and cellular processes. These AI-based R-n-R tools have the potential to stratify patients into more precise initial diagnostic and therapeutic pathways and permit better dynamic treatment monitoring in this period of personalized medicine. While extremely promising, the clinical acceptance of R-n-R methods and approaches will primarily hinge on their resilience to non-standardization across imaging protocols and their capability to show reproducibility across large multi-institutional cohorts.Radiomics and Radiogenomics in Neuro-Oncology: An Artificial Intelligence Paradigm provides readers with a broad and detailed framework for R-n-R approaches with AI in neuro-oncology, the description of cancer biology and genomics study of cancer, and the methods usually implemented for analyzing. Readers will also learn about the current solutions R-n-R can offer for personalized treatments of patients, limitations, and prospects. There is comprehensive coverage of information based on radiomics, radiogenomics, cancer biology, and medical image analysis viewpoints on neuro-oncology, so this in-depth coverage is divided into two Volumes.Volume 1: Radiogenomics Flow Using Artificial Intelligence provides coverage of genomics and molecular study of brain cancer, medical imaging modalities and analysis in neuro-oncology, and prognostic and predictive models using radiomics.Volume 2: Genetics and Clinical Applications provides coverage of imaging signatures for brain cancer molecular characteristics, clinical applications of R-n-R in neuro-oncology, and Machine Learning and Deep Learning AI approaches for R-n-R in neuro-oncology.
商品描述(中文翻譯)
神經腫瘤學廣泛涵蓋了危及生命的腦部和脊髓惡性腫瘤,包括原發性病變和轉移到中樞神經系統的病變。它非常適合用於診斷、分類、預後以及評估治療反應。放射組學和放射基因組學(R-n-R)已成為神經腫瘤學精準醫學的兩個核心支柱。放射組學是一種醫學影像學方法,用於使用不同的數據特徵化算法提取許多定量影像特徵,而放射基因組學則是最近在神經腫瘤學研究中出現的一種新機制,重點在於影像表型與癌症基因的關係。由於不同計算算法的指數級進展,人工智能方法被用於推進神經腫瘤學診斷和治療方法的精準度。放射組學領域由於在神經腫瘤學領域的高效性,一直處於這一新興學科的前沿。應用於常規和先進醫學影像數據的幾種人工智能方法,從放射組學的角度來看,對於生存預測、癌症異質性分析、偽進展分析和浸潤性腫瘤等任務非常高效。放射基因組學推進了我們對癌症生物學的理解和知識,讓我們能夠以高空間分辨率進行非侵入性分子環境採樣,並對因果異質性分子和細胞過程進行系統級理解。這些基於人工智能的R-n-R工具有潛力將患者分層為更精確的初始診斷和治療途徑,並在個性化醫學時代實現更好的動態治療監測。儘管極具潛力,R-n-R方法和途徑的臨床接受度主要取決於它們對影像協議的非標準化的適應能力以及它們在大型多機構群體中的可重複性展示能力。
《神經腫瘤學中的放射組學和放射基因組學:一種人工智能範式》為讀者提供了神經腫瘤學中R-n-R方法與人工智能的廣泛且詳細的框架,包括癌症生物學和癌症基因組學研究的描述,以及通常用於分析的方法。讀者還將了解R-n-R在個性化治療中可以提供的當前解決方案、限制和前景。該書全面涵蓋了基於放射組學、放射基因組學、癌症生物學和醫學影像分析觀點的神經腫瘤學相關信息,因此這種深入的涵蓋範圍分為兩卷。
第一卷:使用人工智能的放射基因組學流程涵蓋了腦癌的基因組學和分子研究、神經腫瘤學中的醫學影像模式和分析,以及使用放射組學的預測模型。
第二卷:遺傳學和臨床應用涵蓋了腦癌分子特徵的影像標誌、神經腫瘤學中R-n-R的臨床應用,以及神經腫瘤學中的機器學習和深度學習人工智能方法。