Hamiltonian Monte Carlo Methods in Machine Learning
暫譯: 機器學習中的哈密頓蒙特卡羅方法

Marwala, Tshilidzi, Mbuvha, Rendani, Mongwe, Wilson Tsakane

  • 出版商: Academic Press
  • 出版日期: 2023-02-17
  • 售價: $6,380
  • 貴賓價: 9.5$6,061
  • 語言: 英文
  • 頁數: 220
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0443190356
  • ISBN-13: 9780443190353
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Hamiltonian Monte Carlo Methods in Machine Learning introduces methods for optimal tuning of HMC parameters, along with an introduction of Shadow and Non-canonical HMC methods with improvements and speedup. Lastly, the authors address the critical issues of variance reduction for parameter estimates of numerous HMC based samplers. The book offers a comprehensive introduction to Hamiltonian Monte Carlo methods and provides a cutting-edge exposition of the current pathologies of HMC-based methods in both tuning, scaling and sampling complex real-world posteriors. These are mainly in the scaling of inference (e.g., Deep Neural Networks), tuning of performance-sensitive sampling parameters and high sample autocorrelation.

Other sections provide numerous solutions to potential pitfalls, presenting advanced HMC methods with applications in renewable energy, finance and image classification for biomedical applications. Readers will get acquainted with both HMC sampling theory and algorithm implementation.

商品描述(中文翻譯)

哈密頓蒙地卡羅方法在機器學習中的應用》介紹了哈密頓蒙地卡羅(HMC)參數的最佳調整方法,以及影子(Shadow)和非典型(Non-canonical)HMC 方法的介紹,並提供了改進和加速的方案。最後,作者針對許多基於 HMC 的取樣器的參數估計的變異數減少問題進行了重要討論。本書全面介紹了哈密頓蒙地卡羅方法,並對當前 HMC 基礎方法在調整、擴展和取樣複雜現實後驗分佈方面的病態問題提供了前沿的闡述。這些問題主要涉及推理的擴展(例如,深度神經網絡)、性能敏感的取樣參數的調整以及高樣本自相關性。

其他部分提供了許多潛在陷阱的解決方案,展示了先進的 HMC 方法在可再生能源、金融和生物醫學應用中的圖像分類方面的應用。讀者將熟悉 HMC 取樣理論和算法實現。

最後瀏覽商品 (20)