Multimodal Learning Using Heterogeneous Data
暫譯: 使用異質數據的多模態學習
Eslamian, Saeid, Nanjundan, Preethi, George, Jossy
- 出版商: Morgan Kaufmann
- 出版日期: 2025-12-15
- 售價: $6,170
- 貴賓價: 9.5 折 $5,862
- 語言: 英文
- 頁數: 312
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0443275289
- ISBN-13: 9780443275289
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Multimodal Learning Using Heterogeneous Data is a comprehensive guide to the emerging field of multimodal learning, which focuses on integrating diverse data types such as text, images, and audio within a unified framework. The book delves into the challenges and opportunities presented by multimodal data and offers insights into the foundations, techniques, and applications of this interdisciplinary approach. It is intended for researchers and practitioners interested in learning more about multimodal learning and is a valuable resource for those working on projects involving data analysis from multiple modalities. The book begins with a comprehensive introduction, focusing on multimodal learning's foundational principles and the intricacies of heterogeneous data. It then delves into feature extraction, fusion techniques, and deep learning architectures tailored for multimodal data. It also covers transfer learning, pre-processing challenges, and cross-modal information retrieval. The book highlights the application of multimodal learning in specialized contexts such as sentiment analysis, data generation, medical imaging, and ethical considerations. Real-world case studies are woven into the narrative, illuminating the applications of multimodal learning in diverse domains such as natural language processing, multimedia content analysis, autonomous systems, and cognitive computing. The book concludes with an insightful exploration of multimodal data analytics across social media, surveillance, user behavior, and a forward-looking examination of future trends and practical implementations. As a collective resource, Multimodal Learning Using Heterogeneous Data illuminates the powerful utility of multimodal learning to elevate machine learning tasks while also highlighting the need for innovative solutions and methodologies. The book acknowledges the challenges associated with deep learning and the growing importance of ethical considerations in the collection and analysis of multimodal data. Overall, Multimodal Learning Using Heterogeneous Data provides an expansive panorama of this rapidly evolving field, its potential for future research and application, and its vital role in shaping machine learning's evolution.
商品描述(中文翻譯)
《使用異質數據的多模態學習》是一本全面指南,介紹了新興的多模態學習領域,該領域專注於在統一框架內整合文本、圖像和音頻等多種數據類型。這本書深入探討了多模態數據所帶來的挑戰和機遇,並提供了對這一跨學科方法的基礎、技術和應用的見解。它旨在幫助對多模態學習感興趣的研究人員和實踐者,並且對於從事涉及多種模態數據分析的項目的人來說,是一個寶貴的資源。
本書以全面的介紹開始,重點關注多模態學習的基礎原則和異質數據的複雜性。接著深入探討特徵提取、融合技術以及針對多模態數據的深度學習架構。它還涵蓋了遷移學習、預處理挑戰和跨模態信息檢索。本書強調多模態學習在情感分析、數據生成、醫學影像和倫理考量等專業背景下的應用。真實案例研究貫穿全書,闡明了多模態學習在自然語言處理、多媒體內容分析、自主系統和認知計算等多個領域的應用。
本書最後深入探討了社交媒體、監控、用戶行為等方面的多模態數據分析,並展望了未來的趨勢和實際應用。作為一個綜合資源,《使用異質數據的多模態學習》揭示了多模態學習在提升機器學習任務中的強大效用,同時強調了創新解決方案和方法論的必要性。本書承認了與深度學習相關的挑戰,以及在收集和分析多模態數據時倫理考量日益重要的現實。
總體而言,《使用異質數據的多模態學習》提供了這一快速發展領域的廣闊全景,展示了其未來研究和應用的潛力,以及在塑造機器學習演變中的重要角色。