Machine Learning: From the Classics to Deep Networks, Transformers, and Diffusion Models
暫譯: 機器學習:從經典到深度網絡、變壓器與擴散模型
Theodoridis, Sergios
- 出版商: Academic Press
- 出版日期: 2025-04-21
- 售價: $4,210
- 貴賓價: 9.5 折 $4,000
- 語言: 英文
- 頁數: 1200
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0443292388
- ISBN-13: 9780443292385
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Machine Learning: From the Classics to Deep Networks, Transformers and Diffusion Models, Third Edition starts with the basics, including least squares regression and maximum likelihood methods, Bayesian decision theory, logistic regression, and decision trees. It then progresses to more recent techniques, covering sparse modelling methods, learning in reproducing kernel Hilbert spaces and support vector machines. Bayesian learning is treated in detail with emphasis on the EM algorithm and its approximate variational versions with a focus on mixture modelling, regression and classification. Nonparametric Bayesian learning, including Gaussian, Chinese restaurant, and Indian buffet processes are also presented. Monte Carlo methods, particle filtering, probabilistic graphical models with emphasis on Bayesian networks and hidden Markov models are treated in detail. Dimensionality reduction and latent variables modelling are considered in depth. Neural networks and deep learning are thoroughly presented, starting from the perceptron rule and multilayer perceptrons and moving on to convolutional and recurrent neural networks, adversarial learning, capsule networks, deep belief networks, GANs, and VAEs. The book also covers the fundamentals on statistical parameter estimation and optimization algorithms.
Focusing on the physical reasoning behind the mathematics, without sacrificing rigor, all methods and techniques are explained in depth, supported by examples and problems, providing an invaluable resource to the student and researcher for understanding and applying machine learning concepts.商品描述(中文翻譯)
《機器學習:從經典到深度網絡、變壓器和擴散模型(第三版)》從基礎開始,包括最小二乘回歸和最大似然方法、貝葉斯決策理論、邏輯回歸和決策樹。接著進入更近期的技術,涵蓋稀疏建模方法、在重現核希爾伯特空間中的學習以及支持向量機。貝葉斯學習詳細介紹,重點在於EM算法及其近似變分版本,並專注於混合建模、回歸和分類。非參數貝葉斯學習,包括高斯過程、中式餐廳過程和印度自助餐過程也有介紹。蒙地卡羅方法、粒子過濾、強調貝葉斯網絡和隱馬可夫模型的概率圖模型也被詳細探討。維度減少和潛變量建模也被深入考慮。神經網絡和深度學習被徹底介紹,從感知器規則和多層感知器開始,然後轉向卷積神經網絡和遞歸神經網絡、對抗學習、膠囊網絡、深度信念網絡、生成對抗網絡(GANs)和變分自編碼器(VAEs)。本書還涵蓋統計參數估計和優化算法的基本原理。
本書專注於數學背後的物理推理,並不犧牲嚴謹性,所有方法和技術都進行了深入解釋,並提供了例子和問題,為學生和研究人員理解和應用機器學習概念提供了寶貴的資源。