Decentralized Optimization in Networks: Algorithmic Efficiency and Privacy Preservation
暫譯: 網絡中的去中心化優化:算法效率與隱私保護
Lü, Qingguo, Liao, Xiaofeng, Li, Huaqing
- 出版商: Morgan Kaufmann
- 出版日期: 2025-08-13
- 售價: $5,000
- 貴賓價: 9.5 折 $4,750
- 語言: 英文
- 頁數: 276
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0443333378
- ISBN-13: 9780443333378
-
相關分類:
大數據 Big-data
海外代購書籍(需單獨結帳)
相關主題
商品描述
Decentralized Optimization in Networks: Algorithmic Efficiency and Privacy Preservation provides the reader with theoretical foundations, practical guidance, and solutions to decentralized optimization problems. The book demonstrates the application of decentralized optimization algorithms to enhance communication and computational efficiency, solve large-scale datasets, maintain privacy preservation, and address challenges in complex decentralized networks. The book covers key topics such as event-triggered communication, random link failures, zeroth-order gradients, variance-reduction, Polyak's projection, stochastic gradient, random sleep, and differential privacy. It also includes simulations and practical examples to illustrate the algorithms' effectiveness and applicability in real-world scenarios.
商品描述(中文翻譯)
《去中心化網絡中的優化:演算法效率與隱私保護》為讀者提供了理論基礎、實務指導以及解決去中心化優化問題的方案。本書展示了去中心化優化演算法的應用,以提升通信和計算效率、解決大規模數據集、維護隱私保護,並應對複雜去中心化網絡中的挑戰。本書涵蓋了關鍵主題,如事件觸發通信、隨機鏈路故障、零階梯度、方差減少、Polyak投影、隨機梯度、隨機休眠以及差分隱私。它還包括模擬和實際範例,以說明演算法在現實場景中的有效性和適用性。