Current Trends in Breast Cancer Pathology, Screening, Diagnosis and Treatments
暫譯: 乳腺癌病理學、篩檢、診斷與治療的最新趨勢
Khan, Firdos Alam
- 出版商: Academic Press
- 出版日期: 2026-01-30
- 售價: $6,020
- 貴賓價: 9.5 折 $5,719
- 語言: 英文
- 頁數: 404
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0443333475
- ISBN-13: 9780443333477
-
相關分類:
DeepLearning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Cutting-edge Computational Intelligence in Healthcare with Convolution and Kronecker Convolution-based Approaches discusses how advanced deep learning techniques enhance medical image analysis. These advances offer promising progress in healthcare through improvements in diagnostic accuracy, efficiency in medical image interpretation, and breakthroughs in treatment planning. The book begins by explaining foundational concepts of deep learning and Convolutional Neural Networks (CNNs) to show how they extract meaningful features from medical images for tasks such as diagnosis and segmentation. It then explores Kronecker convolutions, highlighting their ability to better capture spatial hierarchies, use parameters more efficiently, and adapt to unique medical image characteristics. Subsequent sections cover applications like tumor detection, organ segmentation, and disease classification and examine real-world implementations of AI in diagnostic imaging, precision medicine, and continuous health monitoring through wearable devices. The final section addresses challenges, emerging trends, and future directions, emphasising how these techniques could shape advanced healthcare. Throughout the book, the authors bridge medicine, computer science, and machine learning to address complex problems in medical imaging and healthcare.
商品描述(中文翻譯)
《醫療保健中的前沿計算智能:基於卷積和克羅內克卷積的方法》探討了先進的深度學習技術如何增強醫學影像分析。這些進展通過提高診斷準確性、提升醫學影像解釋的效率以及在治療計劃方面的突破,為醫療保健帶來了可喜的進展。
本書首先解釋了深度學習和卷積神經網絡(CNN)的基礎概念,以展示它們如何從醫學影像中提取有意義的特徵,用於診斷和分割等任務。接著探討了克羅內克卷積,強調其在捕捉空間層次結構方面的優勢,更有效地使用參數,並適應獨特的醫學影像特徵。隨後的章節涵蓋了腫瘤檢測、器官分割和疾病分類等應用,並檢視了人工智慧在診斷影像、精準醫療和通過可穿戴設備進行持續健康監測的實際應用。
最後一部分討論了挑戰、新興趨勢和未來方向,強調這些技術如何塑造先進的醫療保健。在整本書中,作者將醫學、計算機科學和機器學習結合起來,以解決醫學影像和醫療保健中的複雜問題。