Challenges and Applications of Generative Large Language Models
暫譯: 生成大型語言模型的挑戰與應用
Pillai, Anitha S., Tedesco, Roberto, Scotti, Vincenzo
- 出版商: Morgan Kaufmann
- 出版日期: 2026-01-09
- 售價: $6,210
- 貴賓價: 9.5 折 $5,900
- 語言: 英文
- 頁數: 270
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0443335923
- ISBN-13: 9780443335921
-
相關分類:
Large language model
海外代購書籍(需單獨結帳)
相關主題
商品描述
Large Language Models (LLMs) are a form of generative AI, based on Deep Learning, that rely on very large textual datasets, and are composed of hundreds of millions (or even billions) of parameters. LLMs can be trained and then refined to perform several NLP tasks like generation of text, summarization, translation, prediction, and more. Challenges and Applications of Generative Large Language Models assists readers in understanding LLMs, their applications in various sectors, challenges that need to be encountered while developing them, open issues, and ethical concerns. LLMs are just one approach in the huge set of methodologies provided by AI. The book, describing strengths and weaknesses of such models, enables researchers and software developers to decide whether an LLM is the right choice for the problem they are trying to solve. AI is the new buzzword, in particular Generative AI for human language (LLMs). As such, an overwhelming amount of hype is obfuscating and giving a distorted view about AI in general, and LLMs in particular. Thus, trying to provide an objective description of LLMs is useful to any person (researcher, professional, student) who is starting to work with human language. The risk, otherwise, is to forget the whole set of methodologies developed by AI in the last decades, sticking with only one model which, although very powerful, has known weaknesses and risks. Given the high level of hype around such models, Challenges and Applications of Generative Large Language Models (LLMs) enables readers to clarify and understand their scope and limitations.
商品描述(中文翻譯)
大型語言模型(LLMs)是一種基於深度學習的生成式人工智慧,依賴於非常龐大的文本數據集,並由數億(甚至數十億)個參數組成。LLMs 可以被訓練並進一步精煉,以執行多種自然語言處理(NLP)任務,如文本生成、摘要、翻譯、預測等。《生成式大型語言模型的挑戰與應用》幫助讀者理解 LLMs、它們在各個領域的應用、開發過程中需要面對的挑戰、未解決的問題以及倫理考量。LLMs 只是人工智慧提供的眾多方法中的一種。這本書描述了這些模型的優勢和劣勢,使研究人員和軟體開發者能夠決定 LLM 是否是解決他們所面臨問題的合適選擇。人工智慧是當前的新熱詞,特別是針對人類語言的生成式人工智慧(LLMs)。因此,圍繞這些模型的過度炒作使得人們對人工智慧(尤其是 LLMs)產生了模糊和扭曲的看法。因此,提供 LLMs 的客觀描述對於任何開始接觸人類語言的個體(研究人員、專業人士、學生)都是有益的。否則,風險在於忘記過去幾十年來人工智慧所開發的整套方法論,而僅僅依賴於一種模型,儘管這種模型非常強大,但也存在已知的弱點和風險。考慮到圍繞這些模型的高度炒作,《生成式大型語言模型的挑戰與應用》使讀者能夠澄清並理解其範圍和限制。