AI Technologies for Crop Breeding
暫譯: 農作物育種的人工智慧技術
Chen, Jen-Tsung
- 出版商: Academic Press
- 出版日期: 2025-10-20
- 售價: $5,080
- 貴賓價: 9.5 折 $4,826
- 語言: 英文
- 頁數: 300
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0443336334
- ISBN-13: 9780443336331
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
AI Technologies for Crop Breeding offers the latest insights into the use of artificial intelligence models to improve plant health and production. Presenting applications of AI technologies in plant biology, biotechnology, and crop breeding, it explores practices for the mitigation of biotic and abiotic stressors as well as other plant growth challenges. AI-based technologies are expected to advance approaches to plant functional genomics and multiple omics, resulting in smarter and more efficient crop breeding for next-generation agriculture helping to address the challenges of the increasing human population and the globally changing climate. AI tools such as machine learning, particularly deep learning, have been applied to predict chief players in complicated biological networks, increasing the understanding of in-depth mechanisms of plant-pathogen and plant-environment interactions. Additionally, responses of plants facing stress can be modeled using AI technologies, and the resulting data are valuable not only to plant stress physiology but also for stress-resilient and disease-resistant crop breeding. This book introduces AI technologies for studying plant biology, focusing on machine learning and deep learning models for integrating multiple omics approaches and revealing the knowledge of plant functional genomes. Technological advancements and emerging applications of machine learning and deep learning in genomic selection, genome-wide association study (GWAS), phenotyping and constructing phenomics, and transcriptomics are also featured in this book. AI Technologies for Crop Breeding is an ideal reference for researchers, academics, and advanced-level students and professors in the fields of plant sciences, plant stress physiology, bioinformatics, systems biology, and crop breeding.
商品描述(中文翻譯)
《作物育種的人工智慧技術》提供了有關使用人工智慧模型改善植物健康和生產的最新見解。該書展示了人工智慧技術在植物生物學、生物技術和作物育種中的應用,探討了減輕生物和非生物壓力源以及其他植物生長挑戰的實踐。
基於人工智慧的技術預期將推進植物功能基因組學和多重組學的方法,從而實現更智能、更高效的作物育種,以應對日益增長的人口和全球氣候變化所帶來的挑戰。人工智慧工具,如機器學習,特別是深度學習,已被應用於預測複雜生物網絡中的主要參與者,增進對植物-病原體和植物-環境互動的深入機制的理解。此外,面對壓力的植物反應可以使用人工智慧技術進行建模,所產生的數據對植物壓力生理學以及抗壓和抗病的作物育種都具有重要價值。
本書介紹了用於研究植物生物學的人工智慧技術,重點關注機器學習和深度學習模型在整合多重組學方法和揭示植物功能基因組知識方面的應用。本書還介紹了機器學習和深度學習在基因組選擇、全基因組關聯研究(GWAS)、表型分析和構建表型學以及轉錄組學中的技術進展和新興應用。
《作物育種的人工智慧技術》是植物科學、植物壓力生理學、生物資訊學、系統生物學和作物育種領域的研究人員、學者以及高級學生和教授的理想參考書。