Spatio-Temporal Learning and Monitoring for Complex Dynamic Processes with Irregular Data
暫譯: 不規則數據的複雜動態過程之空間-時間學習與監控
Zhao, Chunhui, Yu, Wanke
- 出版商: Academic Press
- 出版日期: 2025-07-25
- 售價: $6,440
- 貴賓價: 9.5 折 $6,118
- 語言: 英文
- 頁數: 258
- 裝訂: Quality Paper - also called trade paper
- ISBN: 044333675X
- ISBN-13: 9780443336751
-
相關分類:
數學、Data-mining
海外代購書籍(需單獨結帳)
相關主題
商品描述
Spatio-Temporal Learning Using Irregular Data for Complex Dynamic Processes introduces learning, modeling, and monitoring methods for highly complex dynamic processes with irregular data. Two classes of robust modeling methods are highlighted, including low-rank characteristic of matrices and heavy-tailed characteristic of distributions. In this class, the missing data, ambient noise, and outlier problems are solved using low-rank matrix complement for monitoring model development. Secondly, the Laplace distribution is explored, which is adopted to measure the process uncertainty to develop robust monitoring models. The book not only discusses the complex models but also their real-world applications in industry.
商品描述(中文翻譯)
《使用不規則數據進行時空學習以應對複雜動態過程》介紹了針對具有不規則數據的高度複雜動態過程的學習、建模和監控方法。書中強調了兩類穩健的建模方法,包括矩陣的低秩特性和分佈的重尾特性。在這一類中,缺失數據、環境噪聲和異常值問題通過使用低秩矩陣補全來解決,以監控模型的發展。其次,探討了拉普拉斯分佈,該分佈被用來衡量過程的不確定性,以開發穩健的監控模型。
本書不僅討論了複雜模型,還探討了它們在工業中的實際應用。