Machine Learning Solutions for Inverse Problems: Part a: Volume 26
暫譯: 逆問題的機器學習解決方案:第26卷 A 部分
Hintermüller, Michael, Hauptmann, Andreas, Jin, Bangti
- 出版商: Academic Press
- 出版日期: 2025-10-28
- 售價: $7,620
- 貴賓價: 9.5 折 $7,239
- 語言: 英文
- 頁數: 366
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 044341789X
- ISBN-13: 9780443417894
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Machine Learning Solutions for Inverse Problems: Part A, Volume 26 in the Handbook of Numerical Analysis, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics, including Data-Driven Approaches for Generalized Lasso Problems, Implicit Regularization of the Deep Inverse Prior via (Inertial) Gradient Flow, Generalized Hardness of Approximation, Hallucinations, and Trustworthiness in Machine Learning for Inverse Problems, Energy-Based Models for Inverse Imaging Problems, Regularization Theory of Stochastic Iterative Methods for Solving Inverse Problems, and more. Other sections cover Advances in Identifying Differential Equations from Noisy Data Observations, The Complete Electrode Model for Electrical Impedance Tomography: A Comparative Study of Deep Learning and Analytical Methods, Learned Iterative Schemes: Neural Network Architectures for Operator Learning, Jacobian-Free Backpropagation for Unfolded Schemes with Convergence Guarantees, and Operator Learning Meets Inverse Problems: A Probabilistic Perspective
商品描述(中文翻譯)
《機器學習解決反問題:第 A 部分,第 26 卷》收錄於《數值分析手冊》中,突顯了該領域的新進展。這本新卷呈現了多個有趣的章節,涵蓋多個及時的主題,包括針對廣義 Lasso 問題的數據驅動方法、通過(慣性)梯度流的深度反向先驗的隱式正則化、近似的廣義困難、幻覺以及在反問題的機器學習中的可信度、針對反成像問題的基於能量的模型、解決反問題的隨機迭代方法的正則化理論等。
其他部分涵蓋了從噪聲數據觀測中識別微分方程的進展、電阻抗斷層掃描的完整電極模型:深度學習與分析方法的比較研究、學習的迭代方案:用於運算元學習的神經網絡架構、無雅可比反向傳播的展開方案及其收斂保證,以及運算元學習與反問題的結合:一種概率視角。