Ultra-Wideband Wireless Communications and Networks

Xuemin Shen, Mohsen Guizani, Robert Caiming Qiu, Tho Le-Ngoc

  • 出版商: Wiley
  • 出版日期: 2006-04-01
  • 售價: $1,380
  • 貴賓價: 9.8$1,352
  • 語言: 英文
  • 頁數: 322
  • 裝訂: Hardcover
  • ISBN: 0470011440
  • ISBN-13: 9780470011447
  • 相關分類: Wireless-networks
  • 立即出貨 (庫存=1)




Ultra-wideband (UWB) technology has great potential for applications in wireless communications, radar and location. It has many benefits due to its ultra-wideband nature, which include high data rate, less path loss and better immunity to multipath propagation, availability of low-cost transceivers, low transmit power and low interference. Despite R&D results so far demonstrating that UWB radio is a promising solution for high-rate short-range wireless communications, further extensive investigation is necessary towards developing effective and efficient UWB communication systems and UWB technology.

Ultra-wideband Wireless Communications and Networks explores both the fundamental aspects and the more advanced topics of networks and applications. Challenges and up-to-date technical progress in the field are presented, with timely reporting of results from cutting-edge research and state-of-the-art technology in UWB wireless communications.

  • Unique focus on UWB wireless communications rather than previously covered UWB radar aspects.
  • Topics include: radio propagation and large scale variations, pulse propagation and channel modelling, MIMO (Multiple Input – Multiple Output) RF subsystems and ad hoc networks.
  • Features a wealth of tables, illustrations and photographs.

This book is aimed at professionals wishing to enhance their knowledge of UWB wireless communications systems for short range communications. It will also appeal to senior undergraduate and graduate students who require information on the key topics in this area.

Table of Contents

List of Contributors.


1 Introduction (Robert Caiming Qiu, Xuemin (Sherman) Shen, Mohsen Guizani and Tho Le-Ngoc).

1.1 Fundamentals.

1.2 Issues Unique to UWB.

1.3 Emerging Technologies.


2 Modulation and Signal Detection in UWB (Uzoma A. Onunkwo and Ye (Geoffrey) Li).

2.1 Overview.

2.2 Single-Carrier–Based Modulation.

2.3 OFDM-Based Modulation.

2.4 Conclusion and Further Reading.


3 UWB Pulse Propagation and Detection (Robert Caiming Qiu).

3.1 Introduction.

3.2 UWB Pulse Propagation.

3.3 UWB Pulse Signal Detection.


4 Timing Synchronization for UWB Impulse Radios (Zhi Tian and Georgios B. Giannakis).

4.1 Introduction.

4.2 Signal Model.

4.3 Signal Detection and Symbol-Level Acquisition.

4.4 SAT and MAT: Templates with and without Timing.

4.5 Coarse Synchronization Using Symbol-Rate Samples.

4.6 Synchronization with Flexible Timing Resolution.

4.7 Timing Acquisition for Ad Hoc Multiple Access.

4.8 Demodulation and BER Sensitivity to Mistiming.

4.9 Concluding Summary.


5 Error Performance of Pulsed Ultrawideband Systems in Indoor Environments (Huaping Liu).

5.1 Introduction.

5.2 System Model.

5.3 Error Performance in Indoor Environments.


6 Mixed-Signal Ultrawideband Communications Receivers (Sebastian Hoyos and Brian M. Sadler).

6.1 Introduction.

6.2 Analog-to-Digital Conversion via Signal Expansion.

6.3 Mixed-Signal Communication Receivers Based on A/D Conversion via Signal Expansion.

6.4 Analog-to-Digital Conversion in the Frequency Domain.

6.5 Frequency-Domain Mixed-Signal Receivers.

6.6 Conclusions.


7 Trends in Ultrawideband Transceiver Design (Zhengyuan Xu).

7.1 Introduction.

7.2 Status of UWB Transceiver Design.

7.3 Digital UWB Receivers.

7.4 Analog/Digital UWB Transceivers.

7.5 Conclusions.



8 UWB MAC and Ad Hoc Networks ( Zihua Guo and Richard Yao).

8.1 Introduction.

8.2 QoS Scheduling in PNC.

8.3 Power Management in IEEE 802.15.3.

8.4 Adaptive Dly-ACK.

8.5 Ad Hoc Networks.

8.6 Summary.


9 Radio Resource Management for Ultra-Wideband Communications (Xuemin (Sherman) Shen, Weihua Zhuang, Hai Jiang and Jun Cai).

9.1 Introduction.

9.2 Radio Resource Management.

9.3 Multiple Access.

9.4 Overhead Reduction.

9.5 Power/Rate Allocation.

9.6 Conclusions.


10 Pulsed UWB Interference to Narrowband Receivers (Jay E. Padgett).

10.1 Introduction.

10.2 Pulsed UWB Signal Model.

10.3 Narrowband Receiver Model.

10.4 Equivalent Receiver Model and Response to a Pulse.

10.5 Response to a Pulse Sequence.

10.6 Simulating the Response to a Pulse Sequence.

10.7 General Properties of the IF Output.

10.8 Power Spectral Density.

10.9 Discrete PDF PSD Example: Equally Spaced, Equally Likely Time Offsets .

10.10 Continuous PDF PSD Examples.

10.11 Comparison of PSD and Simulation Results.

10.12 Statistical Properties of the Output Envelope.

10.13 Summary.


11 Digital-Carrier Spreading Codes for Baseband UWB Multiaccess (Liuqing Yang and Georgios B. Giannakis).

11.1 Introduction.

11.2 Digital-Carrier Multiband User Codes.

11.3 Low Duty-Cycle Access in the Presence of NBI.

11.4 Improved Rate Access in the Presence of Multipath.

11.5 Multiuser Interference Mitigation.

11.6 Summary.


12 Localization ( Kegen Yu, Harri Saarnisaari, Jean-Philippe Montillet, Alberto Rabbachin, Ian Oppermann and Giuseppe Thadeu Freitas de Abreu).

12.1 Introduction.

12.2 Time-of-Arrival Estimation.

12.3 Location and Tracking.

12.4 Location in Distributed Architectures.

12.5 Theoretical Positioning Accuracy.

12.6 Conclusions.











1. 貢獻者名單
2. 前言
3. 第1章 簡介
4. 第2章 UWB調製和信號檢測
5. 第3章 UWB脈衝傳播和檢測