Optimization Methods For Logical Inference
暫譯: 邏輯推理的優化方法
Vijay Chandru, John Hooker
- 出版商: Wiley
- 出版日期: 1999-03-30
- 售價: $1,100
- 貴賓價: 9.8 折 $1,078
- 語言: 英文
- 頁數: 365
- 裝訂: Hardcover
- ISBN: 0471570354
- ISBN-13: 9780471570356
下單後立即進貨 (約5~7天)
買這商品的人也買了...
-
$980$774 -
$480$408 -
$790$521 -
$480$379 -
$750$593 -
$350$277 -
$550$495 -
$880$695 -
$650$514 -
$390$332 -
$380$323 -
$450$383 -
$270$213 -
$980$774 -
$1,080CMMI: Guidelines for Process Integration and Product Improvement, 2/e
-
$750$593 -
$680$537 -
$520$411 -
$1,200$948 -
$600$480 -
$1,330OpenGL SuperBible: Comprehensive Tutorial and Reference, 4/e
-
$780$616 -
$490$323 -
$880$695 -
$450$356
相關主題
商品描述
Optimization methods for logical inference? Absolutely, say Vijay Chandru and John Hooker, two major contributors to this rapidly expanding field. And even though "solving logical inference problems with optimization methods may seem a bit like eating sauerkraut with chopsticks. . . it is the mathematical structure of a problem that determines whether an optimization model can help solve it, not the context in which the problem occurs."
Presenting powerful, proven optimization techniques for logic inference problems, Chandru and Hooker show how optimization models can be used not only to solve problems in artificial intelligence and mathematical programming, but also have tremendous application in complex systems in general. They survey most of the recent research from the past decade in logic/optimization interfaces, incorporate some of their own results, and emphasize the types of logic most receptive to optimization methodspropositional logic, first order predicate logic, probabilistic and related logics, logics that combine evidence such as Dempster-Shafer theory, rule systems with confidence factors, and constraint logic programming systems.
Requiring no background in logic and clearly explaining all topics from the ground up, Optimization Methods for Logical Inference is an invaluable guide for scientists and students in diverse fields, including operations research, computer science, artificial intelligence, decision support systems, and engineering.
商品描述(中文翻譯)
合併邏輯與數學於推理推導中——一種創新且前沿的方法。
邏輯推理的優化方法?當然可以,Vijay Chandru 和 John Hooker 這兩位在這個快速擴展領域的重要貢獻者表示。儘管「用優化方法解決邏輯推理問題可能聽起來有點像用筷子吃酸菜……但決定優化模型是否能幫助解決問題的,並不是問題發生的背景,而是問題的數學結構。」
Chandru 和 Hooker 提出了強大且經過驗證的邏輯推理問題的優化技術,展示了優化模型不僅可以用來解決人工智慧和數學規劃中的問題,還在一般複雜系統中具有巨大的應用潛力。他們回顧了過去十年在邏輯/優化介面方面的大部分最新研究,融入了一些自己的研究成果,並強調了最能接受優化方法的邏輯類型——命題邏輯、一階謂詞邏輯、概率邏輯及相關邏輯、結合證據的邏輯(如 Dempster-Shafer 理論)、具有置信因子的規則系統,以及約束邏輯程式設計系統。
《邏輯推理的優化方法》不需要邏輯背景,並從基礎開始清晰解釋所有主題,是科學家和學生在運籌學、計算機科學、人工智慧、決策支持系統和工程等多個領域中不可或缺的指南。