Nanosystems: Molecular Machinery, Manufacturing, and Computation

K. Eric Drexler

  • 出版商: Wiley
  • 出版日期: 1992-10-13
  • 定價: USD $85.00
  • 售價: $1,500
  • 貴賓價: 9.5$1,425
  • 語言: 英文
  • 頁數: 576
  • 裝訂: Paperback
  • ISBN: 0471575186
  • ISBN-13: 9780471575184

下單後立即進貨 (5~7天)

商品描述

Book Description
"Devices enormously smaller than before will remodel engineering, chemistry, medicine, and computer technology. How can we understand machines that are so small? Nanosystems covers it all: power and strength, friction and wear, thermal noise and quantum uncertainty. This is the book for starting the next century of engineering." — Marvin Minsky MIT Science magazine calls Eric Drexler "Mr. Nanotechnology." For years, Drexler has stirred controversy by declaring that molecular nanotechnology will bring a sweeping technological revolution — delivering tremendous advances in miniaturization, materials, computers, and manufacturing of all kinds. Now, he’s written a detailed, top-to-bottom analysis of molecular machinery — how to design it, how to analyze it, and how to build it. Nanosystems is the first scientifically detailed description of developments that will revolutionize most of the industrial processes and products currently in use. This groundbreaking work draws on physics and chemistry to establish basic concepts and analytical tools. The book then describes nanomechanical components, devices, and systems, including parallel computers able to execute 1020 instructions per second and desktop molecular manufacturing systems able to make such products. Via chemical and biochemical techniques, proximal probe instruments, and software for computer-aided molecular design, the book charts a path from present laboratory capabilities to advanced molecular manufacturing. Bringing together physics, chemistry, mechanical engineering, and computer science, Nanosystems provides an indispensable introduction to the emerging field of molecular nanotechnology.
 
Table of Contents
PHYSICAL PRINCIPLES.
Classical Magnitudes and Scaling Laws.
Potential Energy Surfaces.
Molecular Dynamics.
Positional Uncertainty.
Transitions, Errors, and Damage.
Energy Dissipation.
Mechanosynthesis.
COMPONENTS AND SYSTEMS.
Nanoscale Structural Components.
Mobile Interfaces and Moving Parts.
Intermediate Subsystems.
Nanomechanical Computational Systems.
Molecular Sorting, Processing, and Assembly.
Molecular Manufacturing Systems.
IMPLEMENTATION STRATEGIES.
Macromolecular Engineering.
Paths to Molecular Manufacturing.
Appendices.
Afterword.
Symbols, Units, and Constants.
Glossary.
References.
Index.