Density Ratio Estimation in Machine Learning
Masashi Sugiyama, Taiji Suzuki, Takafumi Kanamori
- 出版商: Cambridge
- 出版日期: 2012-02-20
- 售價: $5,650
- 貴賓價: 9.5 折 $5,368
- 語言: 英文
- 頁數: 342
- 裝訂: Hardcover
- ISBN: 0521190177
- ISBN-13: 9780521190176
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
商品描述
Machine learning is an interdisciplinary field of science and engineering that studies mathematical theories and practical applications of systems that learn. This book introduces theories, methods, and applications of density ratio estimation, which is a newly emerging paradigm in the machine learning community. Various machine learning problems such as non-stationarity adaptation, outlier detection, dimensionality reduction, independent component analysis, clustering, classification, and conditional density estimation can be systematically solved via the estimation of probability density ratios. The authors offer a comprehensive introduction of various density ratio estimators including methods via density estimation, moment matching, probabilistic classification, density fitting, and density ratio fitting as well as describing how these can be applied to machine learning. The book also provides mathematical theories for density ratio estimation including parametric and non-parametric convergence analysis and numerical stability analysis to complete the first and definitive treatment of the entire framework of density ratio estimation in machine learning.