The Design of Approximation Algorithms (Hardcover)
暫譯: 近似演算法的設計 (精裝版)
David P. Williamson, David B. Shmoys
- 出版商: Cambridge
- 出版日期: 2011-04-26
- 售價: $3,170
- 貴賓價: 9.5 折 $3,012
- 語言: 英文
- 頁數: 518
- 裝訂: Hardcover
- ISBN: 0521195276
- ISBN-13: 9780521195270
-
相關分類:
Algorithms-data-structures
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
Parallel Combinatorial Optimization (Hardcover)$5,420$5,149 -
Computational Geometry: Algorithms and Applications, 3/e (Hardcover)$2,400$2,280 -
大話設計模式$620$490 -
大話資料結構$590$466 -
物件導向設計模式-可再利用物件導向軟體之要素 (精裝典藏版) (Design Patterns: Elements of Reusable Object-Oriented Software)$550$550 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
完整學會 Git, GitHub, Git Server 的24堂課$360$284 -
The Probabilistic Method (Hardcover)$5,310$5,045 -
Python 程式設計實務-從初學到活用 Python 開發技巧的16堂課$560$437 -
超圖解物聯網 IoT 實作入門 - 使用 JavaScript/Node.JS/Arduino/Raspberry$699$552 -
讓響應式(RWD)網頁設計變簡單:Bootstrap開發速成 (附135分鐘專題影音教學)$420$332 -
資訊科技概論, 3/e (含Office 2013應用)$420$332 -
Python 機器學習 (Python Machine Learning)$580$452 -
Python 自動化的樂趣|搞定重複瑣碎 & 單調無聊的工作 (中文版) (Automate the Boring Stuff with Python: Practical Programming for Total Beginners)$500$425 -
演算法技術手冊, 2/e (Algorithms in a Nutshell: A Practical Guide, 2/e)$580$458 -
TensorFlow + Keras 深度學習人工智慧實務應用$590$460 -
寫程式前就該懂的演算法 ─ 資料分析與程式設計人員必學的邏輯思考術 (Grokking Algorithms: An illustrated guide for programmers and other curious people)$390$308 -
Deep Learning|用 Python 進行深度學習的基礎理論實作$580$458 -
Introduction to the Theory of Computation, 3/e (Hardcover)$1,490$1,460 -
High-Dimensional Probability: An Introduction with Applications in Data Science (Hardcover)$1,650$1,617 -
High-Dimensional Statistics: A Non-Asymptotic Viewpoint (Hardcover)$1,680$1,646 -
Discrete Mathematics with Applications, 5/e (Metric Edition)(Paperback)$1,620$1,588 -
$1,646Combinatorial Mathematics (Hardcover) -
Introduction to Algorithms, 4/e (Hardcover)$2,190$2,146 -
The Art of Computer Programming: Combinatorial Algorithms, Volume 4B (Hardcover)$2,980$2,920
相關主題
商品描述
Discrete optimization problems are everywhere, from traditional operations research planning problems, such as scheduling, facility location, and network design; to computer science problems in databases; to advertising issues in viral marketing. Yet most such problems are NP-hard. Thus unless P = NP, there are no efficient algorithms to find optimal solutions to such problems. This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. The book is organized around central algorithmic techniques for designing approximation algorithms, including greedy and local search algorithms, dynamic programming, linear and semidefinite programming, and randomization. Each chapter in the first part of the book is devoted to a single algorithmic technique, which is then applied to several different problems. The second part revisits the techniques but offers more sophisticated treatments of them. The book also covers methods for proving that optimization problems are hard to approximate. Designed as a textbook for graduate-level algorithms courses, the book will also serve as a reference for researchers interested in the heuristic solution of discrete optimization problems.
商品描述(中文翻譯)
離散優化問題無處不在,從傳統的運籌學規劃問題,如排程、設施選址和網路設計;到計算機科學中的資料庫問題;再到病毒行銷中的廣告問題。然而,大多數這類問題都是 NP-hard。因此,除非 P = NP,否則沒有有效的演算法可以找到這些問題的最佳解。本書展示了如何設計近似演算法:有效的演算法能夠找到可證明的近似最佳解。本書圍繞設計近似演算法的核心演算法技術進行組織,包括貪婪演算法和局部搜尋演算法、動態規劃、線性和半正定規劃,以及隨機化。書的第一部分每一章都專注於單一的演算法技術,然後將其應用於幾個不同的問題。第二部分重新探討這些技術,但提供更為複雜的處理方式。本書還涵蓋了證明優化問題難以近似的方法。作為研究生級別演算法課程的教科書,本書也將作為對於對離散優化問題的啟發式解法感興趣的研究人員的參考資料。
