買這商品的人也買了...
-
網路規劃與管理實務, 2/e$590$561 -
大話設計模式$620$490 -
重構─改善既有程式的設計, 2/e (Refactoring: Improving The Design of Existing Code)$800$632 -
3ds Max & VRay 精選場景模型庫-商業空間篇$680$578 -
PMP 的硬技巧-專案管理實務與 Microsoft Project 2010 整合應用$580$458 -
PHP Master: Write Cutting Edge Code (Paperback)$1,890$1,796 -
Joomla! 2.5 素人架站計畫$560$442 -
遊戲工作室指導手冊-快速學會四種 Unity 遊戲設計$490$417 -
物聯網概論 (The internet of things)$500$395 -
$528如何提升組織級項目管理能力-OPM3 最佳實踐和案例分析 -
好感度 No.1 的網頁設計:RWD 不出槌法則,網站在任何裝置都完美呈現$350$277 -
$414STM32 庫開發實戰指南 -
啊哈!圖解演算法必學基礎$350$298 -
Xilinx FPGA 開發實用手冊 (Xilinx FPGA 開發實用教學)$580$493 -
養成 iOS 8 App 程式設計實力的 25 堂課-最新 Swift 開發教學(A Practical Guide to Building Your First App from Scratch: Beginning iOS 8 Programming with Swift)$580$452 -
Understanding Context: Environment, Language, and Information Architecture (Paperback)$1,881$1,782 -
Android 程式設計入門、應用到精通--增訂第三版 (適用 5.X~1.X, Android Wear 穿戴式裝置)$560$442 -
AngularJS 建置與執行 (AngularJS: Up and Running: Enhanced Productivity with Structured Web Apps)$520$411 -
Python 程式設計入門 (適用於 2.x 與 3.x 版)$620$484 -
提升 iOS 8 App 程式設計進階實力的 30 項關鍵技巧-最新 Swift 開發教學(Intermediate iOS Programming with Swift)$590$460 -
電玩物理學, 2/e (Physics for Game Developers: Science, math, and code for realistic effects, 2/e)$880$695 -
成為卓越程式設計師的 38 項必修法則 (Becoming a Better Programmer: A Handbook for People Who Care About Code)$680$537 -
iOS 8 + Apple Watch 程式設計實戰--223 個快速上手的開發技巧
$520$411 -
Node.js 的九堂實作課$550$435 -
應用 R 語言於資料分析-從機器學習、資料探勘到巨量資料$380$23
相關主題
商品描述
'What's going to happen next?' Time series data hold the answers, and Bayesian methods represent the cutting edge in learning what they have to say. This ambitious book is the first unified treatment of the emerging knowledge-base in Bayesian time series techniques. Exploiting the unifying framework of probabilistic graphical models, the book covers approximation schemes, both Monte Carlo and deterministic, and introduces switching, multi-object, non-parametric and agent-based models in a variety of application environments. It demonstrates that the basic framework supports the rapid creation of models tailored to specific applications and gives insight into the computational complexity of their implementation. The authors span traditional disciplines such as statistics and engineering and the more recently established areas of machine learning and pattern recognition. Readers with a basic understanding of applied probability, but no experience with time series analysis, are guided from fundamental concepts to the state-of-the-art in research and practice.
商品描述(中文翻譯)
「接下來會發生什麼?」時間序列數據持有答案,而貝葉斯方法則代表了學習這些數據所傳達內容的前沿。本書是一部雄心勃勃的作品,是對新興貝葉斯時間序列技術的首次統一處理。利用概率圖模型的統一框架,本書涵蓋了近似方案,包括蒙地卡羅(Monte Carlo)和確定性(deterministic)方法,並介紹了在各種應用環境中使用的切換(switching)、多物件(multi-object)、非參數(non-parametric)和基於代理(agent-based)模型。它展示了基本框架支持快速創建針對特定應用的模型,並深入探討其實現的計算複雜性。作者涵蓋了傳統學科如統計學和工程學,以及最近建立的機器學習和模式識別領域。對於具有應用概率基本理解但對時間序列分析沒有經驗的讀者,本書將從基本概念引導至研究和實踐的最前沿。
