Fourier Analysis : An Introduction (Princeton Lectures in Analysis, No. 1) (Hardcover)
暫譯: 傅立葉分析:入門(普林斯頓分析講座,第1冊)(精裝本)
Elias M. Stein, Rami Shakarchi
- 出版商: Princeton University
- 出版日期: 2003-04-06
- 售價: $1,580
- 貴賓價: 9.8 折 $1,548
- 語言: 英文
- 頁數: 328
- 裝訂: Hardcover
- ISBN: 069111384X
- ISBN-13: 9780691113845
-
相關分類:
工程數學 Engineering-mathematics
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
Independent Component Analysis (Hardcover)$1,460$1,431 -
資料結構-使用 C 語言 (Fundamentals of Data Structures in C)$450$356 -
Real Analysis : Measure Theory, Integration, and Hilbert Spaces (Princeton Lectures in Analysis, No. 3) (Hardcover)$1,580$1,548 -
Head First Servlets & JSP:SCWCD 專業認證指南 (Head First Servlets & JSP)$880$748 -
深入淺出 Java 程式設計, 2/e (Head First Java, 2/e)$880$695 -
思科全球網路學會 CCNA 1 & 2 中文版 (Cisco Networking Academy Program CCNA 1 and 2 Companion Guide, Revised, 3/e)$880$695 -
$465How Home Theater and HDTV Work (Paperback) -
紅色風暴 II 3ds max 室內設計實例教程-渲染篇$790$624 -
作業系統原理 (Silberschatz: Operating System Principles, 7/e)$780$741 -
如何設計好網站 (Don't Make Me Think: A Common Sense Approach to Web Usability, 2/e)$450$383 -
Spring 技術手冊$580$458 -
Complex Analysis (Princeton Lectures in Analysis, No. 2) (Hardcover)$1,580$1,548 -
ASP.NET 2.0 深度剖析範例集$650$507 -
SQL Server 2005 Reporting Services 報表服務實務應用$620$484 -
SQL 語法範例辭典$550$468 -
Microsoft Office SharePoint Server 2007 實戰手冊$450$356 -
Ajax 實戰手冊 (Ajax in Action)$680$537 -
聖殿祭司的 ASP.NET 2.0 專家技術手冊─使用 C#$720$569 -
深入淺出物件導向分析與設計 (Head First Object-Oriented Analysis and Design)$880$695 -
ASP.NET 應用程式開發─與 AJAX 共舞$620$490 -
Functional Analysis: Introduction to Further Topics in Analysis (Princeton Lectures in Analysis, No. 4) (Hardcover)$1,580$1,548 -
演算法圖鑑:26種演算法 + 7種資料結構,人工智慧、數據分析、邏輯思考的原理和應用 step by step 全圖解$450$356 -
Differential Geometry of Curves and Surfaces: Revised and Updated Second Edition (Paperback)$1,100$1,078 -
Partial Differential Equations : An Introduction, 2/e (Hardcover)$1,820$1,784 -
Kittel`s Introduction to Solid State Physics (Global Edition)(Paperback)$1,580$1,548
相關主題
商品描述
This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions.
The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression.
In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest.
The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
商品描述(中文翻譯)
這第一卷是對該主題的三部分介紹,旨在為具有初步數學分析知識的學生提供動機,以探索塑造傅立葉分析的思想。它始於傅立葉在十九世紀初研究物理科學問題時所得到的簡單信念——任意函數可以寫成最基本三角函數的無限和。
第一部分以傅立葉級數的收斂性和可加性概念來實現這一思想,同時強調應用,例如等周不等式和均勻分佈。第二部分則處理傅立葉變換及其在經典偏微分方程和拉東變換中的應用;對該主題的清晰介紹旨在避免技術上的困難。本書以有限阿貝爾群的傅立葉理論作結,並將其應用於算術級數中的質數。
在組織其闡述時,作者仔細平衡了對關鍵概念洞察的強調與提供嚴謹分析的技術基礎的需求。數學、物理、工程及其他科學的學生將會發現本卷所涵蓋的理論和應用具有真正的興趣。
《普林斯頓分析講座》代表了一項持續的努力,旨在介紹數學分析的核心領域,同時也展示它們之間的有機統一。在計劃中的四卷中,第一卷《傅立葉分析》通過大量的例子和應用,突顯了某些分析思想對其他數學領域和各種科學的深遠影響。斯坦和沙卡爾基從介紹傅立葉級數和積分開始,深入考慮複分析、測度與積分理論、希爾伯特空間,最後探討功能分析、分佈及概率論的基本元素等進一步主題。
