On the Tangent Space to the Space of Algebraic Cycles on a Smooth Algebraic Variety. (Am-157)
暫譯: 平滑代數多樣體上代數循環空間的切空間 (Am-157)

Green, Mark, Griffiths, Phillip A.

  • 出版商: Princeton University Press
  • 出版日期: 2005-01-09
  • 售價: $4,050
  • 貴賓價: 9.5$3,848
  • 語言: 英文
  • 頁數: 208
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0691120447
  • ISBN-13: 9780691120447
  • 相關分類: 數學
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

In recent years, considerable progress has been made in studying algebraic cycles using infinitesimal methods. These methods have usually been applied to Hodge-theoretic constructions such as the cycle class and the Abel-Jacobi map. Substantial advances have also occurred in the infinitesimal theory for subvarieties of a given smooth variety, centered around the normal bundle and the obstructions coming from the normal bundle's first cohomology group. Here, Mark Green and Phillip Griffiths set forth the initial stages of an infinitesimal theory for algebraic cycles.

The book aims in part to understand the geometric basis and the limitations of Spencer Bloch's beautiful formula for the tangent space to Chow groups. Bloch's formula is motivated by algebraic K-theory and involves differentials over Q. The theory developed here is characterized by the appearance of arithmetic considerations even in the local infinitesimal theory of algebraic cycles. The map from the tangent space to the Hilbert scheme to the tangent space to algebraic cycles passes through a variant of an interesting construction in commutative algebra due to Ang niol and Lejeune-Jalabert. The link between the theory given here and Bloch's formula arises from an interpretation of the Cousin flasque resolution of differentials over Q as the tangent sequence to the Gersten resolution in algebraic K-theory. The case of 0-cycles on a surface is used for illustrative purposes to avoid undue technical complications.

商品描述(中文翻譯)

近年來,利用無窮小方法研究代數循環方面取得了相當大的進展。這些方法通常應用於霍奇理論的構造,例如循環類和阿貝爾-雅可比映射。在給定光滑多樣體的子多樣體的無窮小理論方面也發生了重大進展,重點圍繞在法束及其第一上同調群所帶來的障礙。在此,Mark Green 和 Phillip Griffiths 提出了代數循環的無窮小理論的初步階段。

本書的部分目標是理解 Spencer Bloch 的美麗公式對於 Chow 群的切空間的幾何基礎及其限制。Bloch 的公式受到代數 K-理論的啟發,並涉及有理數 Q 上的微分。這裡發展的理論的特點是,即使在代數循環的局部無窮小理論中,也出現了算術考量。從切空間到 Hilbert 方案再到代數循環的切空間的映射,經過了 Ang niol 和 Lejeune-Jalabert 在交換代數中提出的一個有趣構造的變體。這裡給出的理論與 Bloch 的公式之間的聯繫源於對有理數 Q 上微分的 Cousin flasque 解的解釋,將其視為代數 K-理論中 Gersten 解的切序列。為了避免不必要的技術複雜性,這裡使用了在曲面上的 0-循環作為示例。

作者簡介

Mark Green is Professor of Mathematics and Director of the Institute for Pure and Applied Mathematics at the University of California, Los Angeles. Phillip Griffiths is Professor in the School of Mathematics at the Institute of Advanced Study.

作者簡介(中文翻譯)

馬克·格林是加州大學洛杉磯分校數學系的教授及純數學與應用數學研究所所長。菲利普·格里菲斯是高等研究所數學學院的教授。