Computational Aspects of Modular Forms and Galois Representations: How One Can Compute in Polynomial Time the Value of Ramanujan's Tau at a Prime
暫譯: 模組形式與伽羅瓦表示的計算方面:如何在多項式時間內計算拉馬努金的 Tau 在質數上的值

Edixhoven, Bas, Couveignes, Jean-Marc, De Jong, Robin

  • 出版商: Princeton University Press
  • 出版日期: 2011-06-20
  • 售價: $4,520
  • 貴賓價: 9.8$4,430
  • 語言: 英文
  • 頁數: 440
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0691142025
  • ISBN-13: 9780691142029
  • 相關分類: 數值分析 Numerical-analysis
  • 海外代購書籍(需單獨結帳)

商品描述

Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number p can be computed in time bounded by a fixed power of the logarithm of p. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program.

The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields.

The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations.

商品描述(中文翻譯)

模組形式在數學的各個領域中都極為重要,從數論和代數幾何到組合數學和格理論。它們的傅立葉係數,典型的例子是拉馬努金的 tau 函數,具有深刻的算術意義。在這本書之前,已知計算這些傅立葉係數的最快算法需要指數時間,除非在某些特殊情況下。橢圓曲線的情況(Schoof 算法)是在1985年橢圓曲線密碼學誕生之時。本書提供了一種在多項式時間內計算一級模組形式係數的算法。例如,對於質數 p,拉馬努金的 tau 可以在由 p 的對數的固定次方界定的時間內計算出來。這種快速計算傅立葉係數的能力本身基於本書的主要結果:根據 Langlands 計劃,在有限域上計算與模組形式相關的伽羅瓦表示,且該計算在多項式時間內完成。由於這些伽羅瓦表示通常具有不可解的映像,這一結果是從顯式類域理論向前邁進的一大步,可以被描述為顯式 Langlands 計劃的開始。

伽羅瓦表示的計算使用了它們的實現,遵循 Shimura 和 Deligne 的方法,在模曲的雅可比變數的扭結子群中。主要挑戰在於在這些高度非線性代數變數的維度上進行必要的計算,並且時間是多項式的。涉及多變數的多項式方程系統的精確計算需要指數時間。這一點通過數值近似來避免,近似的精度足以從中推導出精確結果。所需精度的界限——換句話說,描述要計算的伽羅瓦表示的有理數的高度界限——是從 Arakelov 理論中獲得的。本書處理了兩種類型的近似:一種使用複數統一化,另一種使用有限域上的幾何。

本書以簡潔而具體的介紹開始,使其對於沒有廣泛算術幾何背景的讀者也能夠理解。此外,本書還包括一章描述實際計算的內容。

作者簡介

Bas Edixhoven is professor of mathematics at the University of Leiden. Jean-Marc Couveignes is professor of mathematics at the University of Toulouse le Mirail. Robin de Jong is assistant professor at the University of Leiden. Franz Merkl is professor of applied mathematics at the University of Munich. Johan Bosman is a postdoctoral researcher at the Institut für Experimentelle Mathematik in Essen, Germany.

作者簡介(中文翻譯)

巴斯·艾迪克斯霍芬是萊頓大學的數學教授。尚-馬克·庫維涅斯是圖盧茲米拉伊大學的數學教授。羅賓·德容是萊頓大學的助理教授。弗朗茲·梅克爾是慕尼黑大學的應用數學教授。約翰·博斯曼是德國埃森實驗數學研究所的博士後研究員。