Exponential Sums, Hypergeometric Sheaves, and Monodromy Groups
暫譯: 指數和、超幾何束與單調群

Katz, Nicholas M., Tiep, Pham Huu

  • 出版商: Princeton University Press
  • 出版日期: 2025-06-24
  • 售價: $3,330
  • 貴賓價: 9.5$3,164
  • 語言: 英文
  • 頁數: 594
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0691272255
  • ISBN-13: 9780691272252
  • 相關分類: 離散數學 Discrete-mathematics
  • 海外代購書籍(需單獨結帳)

商品描述

An examination of some of the remarkable connections between group theory and arithmetic algebraic geometry over finite fields

Exponential sums have been of great interest ever since Gauss, and their importance in analytic number theory goes back a century to Kloosterman. Grothendieck's creation of the machinery of l-adic cohomology led to the understanding that families of exponential sums give rise to local systems, while Deligne, who gave his general equidistribution theorem after proving the Riemann hypothesis part of the Weil conjectures, established the importance of the monodromy groups of these local systems. Deligne's theorem shows that the monodromy group of the local system incarnating a given family of exponential sums determines key statistical properties of the family of exponential sums in question. Despite the apparent simplicity of this relation of monodromy groups to statistical properties, the actual determination of the monodromy group in any particular situation is highly nontrivial and leads to many interesting questions.

This book is devoted to the determination of the monodromy groups attached to various explicit families of exponential sums, especially those attached to hypergeometric sheaves, arguably the simplest local systems on G_m, and to some simple (in the sense of simple to write down) one-parameter families of one-variable sums. These last families turn out to have surprising connections to hypergeometric sheaves. One of the main technical advances of this book is to bring to bear a group-theoretic condition (S+), which, when it applies, implies very strong structural constraints on the monodromy group, and to show that (S+) does indeed apply to the monodromy groups of most hypergeometric sheaves.

商品描述(中文翻譯)

探討群論與有限域上算術代數幾何之間的一些顯著聯繫

指數和自從高斯以來一直受到極大的關注,其在解析數論中的重要性可以追溯到一個世紀前的克勞斯特曼(Kloosterman)。格羅滕迪克(Grothendieck)創造的 l-adic 上同調的工具使人們理解到,指數和的族群會產生局部系統,而德林(Deligne)在證明了魏爾猜想的黎曼假設部分後,給出了他的一般均勻分佈定理,確立了這些局部系統的單調群的重要性。德林的定理顯示,體現給定指數和族群的局部系統的單調群決定了該指數和族群的關鍵統計特性。儘管這種單調群與統計特性之間的關係表面上看似簡單,但在任何特定情況下實際確定單調群是非常不平凡的,並引發了許多有趣的問題。

本書致力於確定附加於各種明確的指數和族群的單調群,特別是那些附加於超幾何束的族群,這些可以說是 G_m 上最簡單的局部系統,以及一些簡單(在於易於寫出的意義上)的一參數一變數和的族群。這些最後的族群與超幾何束之間出現了驚人的聯繫。本書的一個主要技術進展是引入一個群論條件 (S+),當它適用時,意味著對單調群施加非常強的結構約束,並且顯示 (S+) 確實適用於大多數超幾何束的單調群。

作者簡介

Nicholas M. Katz is professor of mathematics at Princeton University. His books include Convolution and Equidistribution: Sato-Tate Theorems for Finite-Field Mellin Transforms (Princeton). Pham Huu Tiep is the Joshua Barlaz Professor and Distinguished Professor of Mathematics at Rutgers University.

作者簡介(中文翻譯)

尼古拉斯·M·卡茲(Nicholas M. Katz)是普林斯頓大學的數學教授。他的著作包括《卷積與等分佈:有限域梅蘭變換的佐藤-塔特定理》(Convolution and Equidistribution: Sato-Tate Theorems for Finite-Field Mellin Transforms,普林斯頓出版社)。范有捷(Pham Huu Tiep)是羅格斯大學的約書亞·巴拉茲教授及傑出數學教授。