Forecasting with Maximum Entropy: The Interface Between Physics, Biology, Economics and Information Theory
暫譯: 最大熵預測:物理學、生物學、經濟學與信息理論的交匯點
Fort, Hugo
- 出版商: IOP Publishing Ltd
- 出版日期: 2022-11-25
- 售價: $4,100
- 貴賓價: 9.5 折 $3,895
- 語言: 英文
- 頁數: 275
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 0750339292
- ISBN-13: 9780750339292
-
相關分類:
物理學 Physics、經濟學 Economy
海外代購書籍(需單獨結帳)
商品描述
This book aims at providing a unifying framework, based on Information Entropy and its maximization, to connect the phenomenology of evolutionary biology, community ecology, financial economics, and statistical physics. This more comprehensive view, besides providing further insight into problems, enables problem-solving strategies by applying proven methods in one discipline to formally similar problems in other areas. The book also proposes a forecasting method for important practical problems in these disciplines and is directed to researchers, students and practitioners working on modelling the dynamics of complex systems.
The common thread is how the flux of information both controls and serves to predict the dynamics of complex systems. It is shown how maximizing the Shannon information entropy allows one to infer a central object controlling the dynamics of complex systems, such as ecosystems or markets. The resulting models, which are known as pairwise maximum-entropy models, can be used to infer interactions from data in a wide variety of systems. Here, two examples are analysed in detail. The first is an application to conservation ecology, namely the issue of providing early warning indicators of population crashes of species of trees in tropical forests. The second is about forecasting the market values of firms through evolutionary economics. An interesting lesson is that PME modelling often produces accurate predictions despite not incorporating explicit interaction mechanisms.
Key features
- Written to be suitable for a broad spectrum of readers and assumes little mathematical specialism.
- Includes pedagogical features: Worked examples, case studies and summaries.
- The interdisciplinary approach builds bridges between disciplines.
- Oriented to solve practical problems.
- Includes a combination of analytical derivations and numerical simulations with experiments
商品描述(中文翻譯)
這本書旨在提供一個統一的框架,基於資訊熵及其最大化,來連結進化生物學、社區生態學、金融經濟學和統計物理學的現象學。這種更全面的觀點,除了提供對問題的進一步洞察,還能通過將一個學科中已證實的方法應用於其他領域形式上相似的問題來啟用解決問題的策略。書中還提出了一種預測這些學科中重要實際問題的方法,並針對從事複雜系統動態建模的研究人員、學生和實務工作者。
共同的主題是資訊的流動如何控制並預測複雜系統的動態。書中展示了如何通過最大化香農資訊熵來推斷控制複雜系統動態的中心物件,例如生態系統或市場。所得到的模型,稱為成對最大熵模型,可以用來從各種系統中的數據推斷互動。在這裡,詳細分析了兩個例子。第一個是應用於保育生態學,即提供熱帶森林中樹種人口崩潰的早期預警指標的問題。第二個是通過進化經濟學預測企業的市場價值。一個有趣的教訓是,PME建模通常能產生準確的預測,儘管沒有納入明確的互動機制。
主要特點
- 針對廣泛的讀者群撰寫,假設數學專業知識較少。
- 包含教學特徵:實例、案例研究和摘要。
- 跨學科的方法在學科之間架起橋樑。
- 以解決實際問題為導向。
- 包含分析推導和數值模擬與實驗的結合。