Data Mining for Bioinformatics (Hardcover)
            
暫譯: 生物資訊學中的資料探勘 (精裝版)
        
        Sumeet Dua, Pradeep Chowriappa
- 出版商: CRC
- 出版日期: 2012-11-06
- 售價: $3,600
- 貴賓價: 9.5 折 $3,420
- 語言: 英文
- 頁數: 348
- 裝訂: Hardcover
- ISBN: 0849328012
- ISBN-13: 9780849328015
- 
    相關分類:
    
      Data-mining
 
- 
    其他版本:
    
      Data Mining for Bioinformatics
 
立即出貨 (庫存=1)
買這商品的人也買了...
- 
                
                   JavaScript-優良部份 (JavaScript: The Good Parts) JavaScript-優良部份 (JavaScript: The Good Parts)$420$332
- 
                
                   JavaScript 大全, 6/e (JavaScript: The Definitive Guide: Activate Your Web Pages, 6/e) JavaScript 大全, 6/e (JavaScript: The Definitive Guide: Activate Your Web Pages, 6/e)$1,200$948
- 
                
                   精實開發與看板方法 精實開發與看板方法$550$435
- 
                
                   Python 程式設計入門 (適用於 2.x 與 3.x 版) Python 程式設計入門 (適用於 2.x 與 3.x 版)$620$484
- 
                
                   Docker 入門與實戰 Docker 入門與實戰$450$356
- 
                
                   It's Django -- 用 Python 迅速打造 Web 應用 It's Django -- 用 Python 迅速打造 Web 應用$400$340
- 
                
                   打造讓人一眼看懂的視覺化圖表 打造讓人一眼看懂的視覺化圖表$380$323
- 
                
                   OpenCV 程式設計參考手冊 OpenCV 程式設計參考手冊$620$490
- 
                
                   精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages) 精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616
- 
                
                   完整學會 Git, GitHub, Git Server 的24堂課 完整學會 Git, GitHub, Git Server 的24堂課$360$284
- 
                
                   Hadoop + Spark 大數據巨量分析與機器學習整合開發實戰 Hadoop + Spark 大數據巨量分析與機器學習整合開發實戰$620$484
- 
                
                   iOS 9 App 程式設計實力超進化實戰攻略:知名iOS教學部落格AppCoda作家親授實作關鍵技巧讓你不NG (Beginning iOS 9 Programming with Swift) iOS 9 App 程式設計實力超進化實戰攻略:知名iOS教學部落格AppCoda作家親授實作關鍵技巧讓你不NG (Beginning iOS 9 Programming with Swift)$690$538
- 
                
                   忍者:JavaScript 開發技巧探秘 (Secrets of the JavaScript Ninja) 忍者:JavaScript 開發技巧探秘 (Secrets of the JavaScript Ninja)$590$460
- 
                
                   丙級電腦軟體應用學術科通關寶典 (Windows7 + Word 2010/2013版)-2016年 (附贈OTAS題測系統) 丙級電腦軟體應用學術科通關寶典 (Windows7 + Word 2010/2013版)-2016年 (附贈OTAS題測系統)$480$432
- 
                
                   王者歸來 - Struts2 + Spring + Hibernate 框架技術與專案實戰應用, 3/e 王者歸來 - Struts2 + Spring + Hibernate 框架技術與專案實戰應用, 3/e$720$612
- 
                
                   $534Spring 實戰, 4/e (Spring in Action, 4/e) $534Spring 實戰, 4/e (Spring in Action, 4/e)
- 
                
                   JavaScript 資料結構及演算法實作 (Learning JavaScript Data Structures and Algorithms) JavaScript 資料結構及演算法實作 (Learning JavaScript Data Structures and Algorithms)$320$250
- 
                
                   測試驅動開發:使用 Python (Test-Driven Development with Python) 測試驅動開發:使用 Python (Test-Driven Development with Python)$880$695
- 
                
                   使用者故事對照 (User Story Mapping: Discover the Whole Story, Build the Right Product) 使用者故事對照 (User Story Mapping: Discover the Whole Story, Build the Right Product)$580$458
- 
                
                   資料科學的商業運用 (Data science for business) 資料科學的商業運用 (Data science for business)$680$537
- 
                
                   $234Python語言程序設計 $234Python語言程序設計
- 
                
                   你所不知道的 JS|範疇與 Closures,this 與物件原型 (You Don't Know JS: this & Object Prototypes) 你所不知道的 JS|範疇與 Closures,this 與物件原型 (You Don't Know JS: this & Object Prototypes)$520$411
- 
                
                   超圖解物聯網 IoT 實作入門 - 使用 JavaScript/Node.JS/Arduino/Raspberry 超圖解物聯網 IoT 實作入門 - 使用 JavaScript/Node.JS/Arduino/Raspberry$699$594
- 
                
                  Android 高效入門>>深度學習-使用 Android Studio 2 開發 Android 6.0 APP$650$507
- 
                
                   你不能錯過的 Node.js 指南:實用X必用X拿來即用的 300段程式碼+173個範例 你不能錯過的 Node.js 指南:實用X必用X拿來即用的 300段程式碼+173個範例$520$411
商品描述
Covering theory, algorithms, and methodologies, as well as data mining technologies, Data Mining for Bioinformatics provides a comprehensive discussion of data-intensive computations used in data mining with applications in bioinformatics. It supplies a broad, yet in-depth, overview of the application domains of data mining for bioinformatics to help readers from both biology and computer science backgrounds gain an enhanced understanding of this cross-disciplinary field.
The book offers authoritative coverage of data mining techniques, technologies, and frameworks used for storing, analyzing, and extracting knowledge from large databases in the bioinformatics domains, including genomics and proteomics. It begins by describing the evolution of bioinformatics and highlighting the challenges that can be addressed using data mining techniques. Introducing the various data mining techniques that can be employed in biological databases, the text is organized into four sections:
- Supplies a complete overview of the evolution of the field and its intersection with computational learning
- Describes the role of data mining in analyzing large biological databases—explaining the breath of the various feature selection and feature extraction techniques that data mining has to offer
- Focuses on concepts of unsupervised learning using clustering techniques and its application to large biological data
- Covers supervised learning using classification techniques most commonly used in bioinformatics—addressing the need for validation and benchmarking of inferences derived using either clustering or classification
The book describes the various biological databases prominently referred to in bioinformatics and includes a detailed list of the applications of advanced clustering algorithms used in bioinformatics. Highlighting the challenges encountered during the application of classification on biological databases, it considers systems of both single and ensemble classifiers and shares effort-saving tips for model selection and performance estimation strategies.
商品描述(中文翻譯)
涵蓋理論、演算法和方法論,以及資料探勘技術,《Data Mining for Bioinformatics》提供了對於在生物資訊學中應用的資料密集型計算的全面討論。它對於生物資訊學中資料探勘的應用領域提供了廣泛而深入的概述,幫助來自生物學和計算機科學背景的讀者增強對這一跨學科領域的理解。
本書對於在生物資訊學領域(包括基因組學和蛋白質組學)中用於儲存、分析和提取大型資料庫知識的資料探勘技術、技術和框架提供了權威的覆蓋。它首先描述了生物資訊學的演變,並突顯了可以通過資料探勘技術解決的挑戰。介紹了可以在生物資料庫中使用的各種資料探勘技術,文本分為四個部分:
1. 提供該領域演變的完整概述及其與計算學習的交集
2. 描述資料探勘在分析大型生物資料庫中的角色——解釋資料探勘所提供的各種特徵選擇和特徵提取技術的廣度
3. 專注於使用聚類技術的無監督學習概念及其在大型生物資料中的應用
4. 涵蓋使用在生物資訊學中最常用的分類技術的監督學習——解決使用聚類或分類推導的推論所需的驗證和基準測試
本書描述了在生物資訊學中顯著提到的各種生物資料庫,並包括了用於生物資訊學的先進聚類演算法應用的詳細列表。強調在對生物資料庫應用分類時遇到的挑戰,考慮了單一和集成分類器的系統,並分享了模型選擇和性能估計策略的省力技巧。

 
     
    
 
    
 
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
    
 
    