Algebraic Number Theory
Richard A. Mollin
- 出版商: CRC
- 出版日期: 1999-03-16
- 售價: $1,880
- 貴賓價: 9.8 折 $1,842
- 語言: 英文
- 頁數: 504
- 裝訂: Hardcover
- ISBN: 0849339898
- ISBN-13: 9780849339899
下單後立即進貨 (約5~7天)
買這商品的人也買了...
-
$1,250$1,225 -
$1,330$1,260 -
$450$356 -
$980$960 -
$1,127Field and Wave Electromagnetics, 2/e (Paperback)
-
$720$562 -
$950$903 -
$490$382 -
$1,200$1,176 -
$2,975$2,826 -
$2,205The Java Programming Language, 4/e (Paperback)
-
$1,240$1,178 -
$588Systems Analysis and Design, 6/e
-
$780$702 -
$550$468 -
$680$666 -
$620$490 -
$350$315 -
$1,176Business Data Communications and Networking, 9/e
-
$780$702 -
$580$551 -
$600$480 -
$4,464CCNP Official Exam Certification Library, 5/e
-
$2,170$2,062 -
$780$608
相關主題
商品描述
Description
Engages readers by offering an historical perspective through the lives of mathematicians who played pivotal roles in developing algebraic number theory Explores in detail the direct, practical application of algebraic number theory to cryptography Provides a rich source of exercises on varying levels designed to enhance, test, and challenge the reader's understandingSolutions manual available with qualifying course adoptions
From its history as an elegant but abstract area of mathematics, algebraic number theory now takes its place as a useful and accessible study with important real-world practicality. Unique among algebraic number theory texts, this important work offers a wealth of applications to cryptography, including factoring, primality-testing, and public-key cryptosystems.
A follow-up to Dr. Mollin's popular Fundamental Number Theory with Applications, Algebraic Number Theory provides a global approach to the subject that selectively avoids local theory. Instead, it carefully leads the student through each topic from the level of the algebraic integer, to the arithmetic of number fields, to ideal theory, and closes with reciprocity laws. In each chapter the author includes a section on a cryptographic application of the ideas presented, effectively demonstrating the pragmatic side of theory.
In this way Algebraic Number Theory provides a comprehensible yet thorough treatment of the material. Written for upper-level undergraduate and graduate courses in algebraic number theory, this one-of-a-kind text brings the subject matter to life with historical background and real-world practicality. It easily serves as the basis for a range of courses, from bare-bones algebraic number theory, to a course rich with cryptography applications, to a course using the basic theory to prove Fermat's Last Theorem for regular primes. Its offering of over 430 exercises with odd-numbered solutions provided in the back of the book and, even-numbered solutions available a separate manual makes this the ideal text for both students and instructors.
Table of Contents
Algebraic Numbers
Origins and Foundations
Algebraic Numbers and Number Fields
Discriminants, Norms, and Traces
Algebraic Integers and Integral Bases
Factorization and Divisibility
Applications of Unique Factorization
Applications to Factoring Using Cubic Integers
Arithmetic of Number Fields
Quadratic Fields
Cyclotomic Fields
Units in Number Rings
Geometry of Numbers
Dirichlet's Unit Theorem
Application: The Number Field Sieve
Ideal Theory
Properties of Ideals
PID's and UFD's
Norms of Ideals
Ideal Classes-The Class Group
Class Numbers of Quadratic Fields
Cyclotomic Fields and Kummer's Theorem--Bernoulli Numbers and Irregular Primes
Cryptography in Quadratic Fields
Ideal Decomposition in Extension Fields
Inertia, Ramification, and Splitting
The Different and Discriminant
Galois Theory and Decomposition
The Kronecker-Weber Theorem
An Application--Primality Testing
Reciprocity Laws
Cubic Reciprocity
The Biquadratic Reciprocity Law
The Stickelberger Relation
The Eisenstein Reciprocity Law
Elliptic Curves, Factoring, and Primality
Appendices
Groups, Modules, Rings, Fields, and Matrices
Sequences and Series
Galois Theory (An Introduction with Exercises)
The Greek Alphabet
Latin Phrases
Solutions to Odd-Numbered Exercises
Bibliograph
List of Symbols
Index (over 1,700 entries)
商品描述(中文翻譯)
描述
這本書提供了數學家在發展代數數論方面扮演關鍵角色的歷史觀點,從而吸引讀者的興趣。同時,它詳細探討了代數數論在密碼學中的直接實際應用。書中還提供了豐富的練習題,旨在增強、測試和挑戰讀者的理解能力。對於符合課程要求的採用者,還提供了解答手冊。
從作為一個優雅但抽象的數學領域的歷史,代數數論現在成為一門有用且易於理解的研究,具有重要的現實實用性。這本重要的書籍在代數數論教材中獨樹一幟,提供了豐富的密碼學應用,包括因數分解、素性測試和公鑰加密系統。
作為Mollin博士受歡迎的《基礎數論與應用》的續集,《代數數論》提供了一種全球性的方法,有選擇性地避免了局部理論。相反,它仔細地引導學生從代數整數的層次,到數域的算術,再到理想理論,最後以互惠定律作為結尾。在每一章中,作者都包括了一個關於所呈現的思想的密碼學應用的部分,有效地展示了理論的實用面。
通過這種方式,《代數數論》提供了一種易於理解但全面的教材。這本書適用於高年級本科生和研究生的代數數論課程,並通過歷史背景和現實實用性將主題活靈活現地呈現出來。它可以作為各種課程的基礎,從基礎的代數數論到富含密碼學應用的課程,再到使用基本理論證明正規素數的費馬大定理的課程。書中提供了超過430個練習題,奇數解答在書的後面,偶數解答在另一本單獨的解答手冊中,這使得它成為學生和教師的理想教材。