Knowledge-Infused Learning: Neurosymbolic AI for Explainability, Interpretability, and Safety
暫譯: 知識融入學習:神經符號人工智慧的可解釋性、可理解性與安全性

Gaur, Manas, Sheth, Amit P.

  • 出版商: Cambridge
  • 出版日期: 2025-10-31
  • 售價: $2,750
  • 貴賓價: 9.5$2,613
  • 語言: 英文
  • 頁數: 310
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1009513745
  • ISBN-13: 9781009513746
  • 相關分類: 人工智慧
  • 尚未上市,無法訂購

相關主題

商品描述

Knowledge-infused learning directly confronts the opacity of current 'black-box' AI models by combining data-driven machine learning techniques with the structured insights of symbolic AI. This guidebook introduces the pioneering techniques of neurosymbolic AI, which blends statistical models with symbolic knowledge to make AI safer and user-explainable. This is critical in high-stakes AI applications in healthcare, law, finance, and crisis management. The book brings readers up to speed on advancements in statistical AI, including transformer models such as BERT and GPT, and provides a comprehensive overview of weakly supervised, distantly supervised, and unsupervised learning methods alongside their knowledge-enhanced variants. Other topics include active learning, zero-shot learning, and model fusion. Beyond theory, the book presents practical considerations and applications of neurosymbolic AI in conversational systems, mental health, crisis management systems, and social and behavioral sciences, making it a pragmatic reference for AI system designers in academia and industry.

商品描述(中文翻譯)

知識融入學習直接面對當前「黑箱」AI模型的不透明性,通過將數據驅動的機器學習技術與符號AI的結構化見解相結合。本指南介紹了神經符號AI的開創性技術,該技術將統計模型與符號知識融合,以使AI更安全且易於用戶解釋。這在醫療、法律、金融和危機管理等高風險AI應用中至關重要。本書使讀者了解統計AI的最新進展,包括如BERT和GPT等變壓器模型,並提供有關弱監督、遠程監督和無監督學習方法及其知識增強變體的全面概述。其他主題包括主動學習、零樣本學習和模型融合。除了理論外,本書還介紹了神經符號AI在對話系統、心理健康、危機管理系統以及社會和行為科學中的實際考量和應用,使其成為學術界和業界AI系統設計師的務實參考。

最後瀏覽商品 (1)