Deep Learning in Quantitative Trading
暫譯: 量化交易中的深度學習
Zhang, Zihao, Zohren, Stefan
- 出版商: Cambridge
- 出版日期: 2025-10-30
- 售價: $1,120
- 貴賓價: 9.5 折 $1,064
- 語言: 英文
- 頁數: 75
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1009707116
- ISBN-13: 9781009707114
-
相關分類:
DeepLearning
海外代購書籍(需單獨結帳)
商品描述
This Element provides a comprehensive guide to deep learning in quantitative trading, merging foundational theory with hands-on applications. It is organized into two parts. The first part introduces the fundamentals of financial time-series and supervised learning, exploring various network architectures, from feedforward to state-of-the-art. To ensure robustness and mitigate overfitting on complex real-world data, a complete workflow is presented, from initial data analysis to cross-validation techniques tailored to financial data. Building on this, the second part applies deep learning methods to a range of financial tasks. The authors demonstrate how deep learning models can enhance both time-series and cross-sectional momentum trading strategies, generate predictive signals, and be formulated as an end-to-end framework for portfolio optimization. Applications include a mixture of data from daily data to high-frequency microstructure data for a variety of asset classes. Throughout, they include illustrative code examples and provide a dedicated GitHub repository with detailed implementations.
商品描述(中文翻譯)
本書提供了一個全面的深度學習在量化交易中的指南,將基礎理論與實務應用相結合。內容分為兩個部分。第一部分介紹金融時間序列和監督學習的基本概念,探討各種網絡架構,從前饋網絡到最先進的模型。為了確保穩健性並減少在複雜的現實數據上過擬合的情況,書中呈現了一個完整的工作流程,從初步數據分析到針對金融數據的交叉驗證技術。基於此,第二部分將深度學習方法應用於各種金融任務。作者展示了深度學習模型如何增強時間序列和橫截面動量交易策略,生成預測信號,並可被構建為一個端到端的投資組合優化框架。應用範圍包括從日常數據到高頻微觀結構數據的多種資產類別。在整個過程中,他們提供了示範性的代碼範例,並提供了一個專門的 GitHub 倉庫,內含詳細的實現。