Data-Driven Evolutionary Modeling in Materials Technology
暫譯: 材料技術中的數據驅動演化建模
Chakraborti, Nirupam
- 出版商: CRC
- 出版日期: 2022-09-15
- 售價: $7,750
- 貴賓價: 9.5 折 $7,363
- 語言: 英文
- 頁數: 304
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1032061731
- ISBN-13: 9781032061733
-
相關分類:
Data-mining、材料科學 Meterials
海外代購書籍(需單獨結帳)
相關主題
商品描述
Due to efficacy and optimization potential of genetic and evolutionary algorithms, they are used in learning and modeling especially with the advent of big data related problems. This book presents the algorithms and strategies specifically associated with pertinent issues in materials science domain. It discusses the procedures for evolutionary multi-objective optimization of objective functions created through these procedures and introduces available codes. Recent applications ranging from primary metal production to materials design are covered. It also describes hybrid modeling strategy, and other common modeling and simulation strategies like molecular dynamics, cellular automata etc.
Features:
- Focuses on data-driven evolutionary modeling and optimization, including evolutionary deep learning.
- Include details on both algorithms and their applications in materials science and technology.
- Discusses hybrid data-driven modeling that couples evolutionary algorithms with generic computing strategies.
- Thoroughly discusses applications of pertinent strategies in metallurgy and materials.
- Provides overview of the major single and multi-objective evolutionary algorithms.
This book aims at Researchers, Professionals, and Graduate students in Materials Science, Data-Driven Engineering, Metallurgical Engineering, Computational Materials Science, Structural Materials, and Functional Materials.
商品描述(中文翻譯)
由於基因和演化演算法的效能及優化潛力,它們在學習和建模中被廣泛使用,特別是在大數據相關問題出現之後。本書介紹了與材料科學領域相關的演算法和策略。它討論了通過這些程序創建的目標函數的演化多目標優化程序,並介紹了可用的程式碼。涵蓋了從初級金屬生產到材料設計的最新應用。它還描述了混合建模策略,以及其他常見的建模和模擬策略,如分子動力學、細胞自動機等。
特色:
- 專注於數據驅動的演化建模和優化,包括演化深度學習。
- 包含有關演算法及其在材料科學和技術中應用的詳細資訊。
- 討論將演化演算法與通用計算策略結合的混合數據驅動建模。
- 徹底討論相關策略在冶金和材料中的應用。
- 提供主要單目標和多目標演化演算法的概述。
本書的目標讀者為材料科學、數據驅動工程、冶金工程、計算材料科學、結構材料和功能材料的研究人員、專業人士及研究生。
作者簡介
Professor Nirupam Chakraborti was educated in India and USA, receiving his B.Met.E from Jadavpur University, India, followed by an MS from New Mexico Tech, USA and PhD, PhD degrees from University of Washington, Seattle, USA. He joined Indian Institute of Technology, Kanpur as a member of the faculty in 1984 and switched to Indian Institute of Technology, Kharagpur in 2000.
Internationally known for his pioneering work on evolutionary computation in the area of Metallurgy and Materials, globally, Professor Chakraborti was rated among the top 2% highly cited researchers in the Materials area in 2000, as per Scopus records. A former Docent of Åbo Akademi, Finland, former Visiting Professors of Florida International University and POSTECH, Korea, he also taught and conducted research at several other academic institutions in Austria, Brazil, Finland, Germany, Italy and the US. An international symposium, under the KomPlasTech 2019, which is world's longest running conference series in the area of computational materials technology, was organized in Poland in 2019 to honor him. In 2020, an issue of a prominent Taylor of Francis journal, Materials and Manufacturing Processes was dedicated to him as well. In 2021 Indian Institute of Technology, Kharagpur and Indian Institute of Metals, a professional body, also organized another international seminar in his honor.
This book is a culmination of Professor Chakarborti's decades of research and teaching efforts in this area.
作者簡介(中文翻譯)
尼魯帕姆·查克拉博提教授在印度和美國接受教育,獲得印度賈達夫普大學的冶金工程學士學位,隨後在美國新墨西哥科技大學獲得碩士學位,並在美國華盛頓大學西雅圖校區獲得博士學位。他於1984年加入印度理工學院坎普爾校區擔任教職,並於2000年轉至印度理工學院卡哈爾古爾校區。
查克拉博提教授因其在冶金和材料領域的進化計算開創性工作而享譽國際,根據Scopus的記錄,他在2000年被評為材料領域前2%高被引研究者。曾任芬蘭阿博學院的講師,並擔任佛羅里達國際大學和韓國POSTECH的訪問教授,他還在奧地利、巴西、芬蘭、德國、義大利和美國的多所學術機構教授和進行研究。2019年,在波蘭舉辦的KomPlasTech 2019國際研討會是全球歷史最悠久的計算材料技術會議系列之一,以此來表彰他。2020年,著名的泰勒與法朗西斯期刊《材料與製造過程》也專門為他出版了一期特刊。2021年,印度理工學院卡哈爾古爾校區和印度金屬學會(專業機構)也舉辦了另一場國際研討會以表彰他。
本書是查克拉博提教授在此領域數十年研究和教學努力的結晶。