Recurrent Neural Networks: Concepts and Applications
暫譯: 循環神經網絡:概念與應用

Kumar Tyagi, Amit, Abraham, Ajith

  • 出版商: CRC
  • 出版日期: 2022-08-08
  • 售價: $6,740
  • 貴賓價: 9.5$6,403
  • 語言: 英文
  • 頁數: 396
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1032081643
  • ISBN-13: 9781032081649
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The text discusses recurrent neural networks for prediction and offers new insights into the learning algorithms, architectures, and stability of recurrent neural networks. It discusses important topics including recurrent and folding networks, long short-term memory (LSTM) networks, gated recurrent unit neural networks, language modeling, neural network model, activation function, feed-forward network, learning algorithm, neural turning machines, and approximation ability. The text discusses diverse applications in areas including air pollutant modeling and prediction, attractor discovery and chaos, ECG signal processing, and speech processing. Case studies are interspersed throughout the book for better understanding.

FEATURES

  • Covers computational analysis and understanding of natural languages
  • Discusses applications of recurrent neural network in e-Healthcare
  • Provides case studies in every chapter with respect to real-world scenarios
  • Examines open issues with natural language, health care, multimedia (Audio/Video), transportation, stock market, and logistics

The text is primarily written for undergraduate and graduate students, researchers, and industry professionals in the fields of electrical, electronics and communication, and computer engineering/information technology.

商品描述(中文翻譯)

本書討論了用於預測的遞迴神經網絡,並提供了對遞迴神經網絡的學習算法、架構和穩定性的新見解。內容涵蓋了重要主題,包括遞迴網絡和摺疊網絡、長短期記憶(LSTM)網絡、門控遞迴單元神經網絡、語言建模、神經網絡模型、激活函數、前饋網絡、學習算法、神經圖靈機和近似能力。本書還討論了在空氣污染建模與預測、吸引子發現與混沌、心電圖信號處理和語音處理等領域的多樣應用。書中穿插了案例研究,以便更好地理解。

特色
- 涵蓋自然語言的計算分析和理解
- 討論遞迴神經網絡在電子健康(e-Healthcare)中的應用
- 每章提供與現實場景相關的案例研究
- 檢視自然語言、健康照護、多媒體(音頻/視頻)、交通運輸、股市和物流等領域的開放性問題

本書主要為電機、電子與通信以及計算機工程/資訊科技領域的本科生、研究生、研究人員和業界專業人士所撰寫。

作者簡介

Amit Kumar Tyagi is Assistant Professor (Senior Grade), and Senior Researcher at Vellore Institute of Technology (VIT), Chennai Campus, India. His current research focuses on Machine Learning with Big data, Blockchain Technology, Data Science, Cyber Physical Systems, Smart & Secure Computing and Privacy. He has contributed to several projects such as AARIN and P3-Block to address some of the open issues related to the privacy breaches in Vehicular Applications (such as Parking) and Medical Cyber Physical Systems. He received his Ph.D. Degree from Pondicherry Central University, India. He is a member of the IEEE

Ajith Abraham is the Director of Machine Intelligence Research Labs (MIR Labs), a Not-for-Profit Scientific Network for Innovation and Research Excellence connecting Industry and Academia. As an Investigator and Co-Investigator, he has won research grants worth over 100+ Million US$ from Australia, USA, EU, Italy, Czech Republic, France, Malaysia and China. His research focuses on real world problems in the fields of machine intelligence, cyber-physical systems, Internet of things, network security, sensor networks, Web intelligence, Web services, and data mining. He is the Chair of the IEEE Systems Man and Cybernetics Society Technical Committee on Soft Computing. He is the editor-in-chief of Engineering Applications of Artificial Intelligence (EAAI) and serves/served on the editorial board of several International Journals. He received his Ph.D. Degree in Computer Science from Monash University, Melbourne, Australia.

作者簡介(中文翻譯)

Amit Kumar Tyagi 是印度金奈維洛爾科技學院(VIT)助理教授(高級職級)及高級研究員。他目前的研究重點包括大數據的機器學習、區塊鏈技術、數據科學、網絡物理系統、智能與安全計算以及隱私。他參與了多個項目,如 AARIN 和 P3-Block,以解決與車輛應用(如停車)和醫療網絡物理系統相關的隱私洩露問題。他在印度龐迪榭里中央大學獲得博士學位,並且是 IEEE 的成員。

Ajith Abraham 是機器智能研究實驗室(MIR Labs)的主任,該實驗室是一個非營利科學網絡,旨在促進創新和研究卓越,連接產業與學術界。作為研究員和共同研究員,他獲得了來自澳大利亞、美國、歐盟、意大利、捷克共和國、法國、馬來西亞和中國的超過 1 億美元的研究資助。他的研究專注於機器智能、網絡物理系統、物聯網、網絡安全、傳感器網絡、網絡智能、網絡服務和數據挖掘等領域的現實問題。他是 IEEE 系統人與控制論學會軟計算技術委員會的主席,也是《人工智慧工程應用》(EAAI)的主編,並在多個國際期刊的編輯委員會中任職或曾任職。他在澳大利亞墨爾本的莫納什大學獲得計算機科學博士學位。